Skip to main content
Log in

Regulated in Development and DNA Damage Response 1 Protects Hepatocytes Against Palmitate-induced Lipotoxicity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Obesity induces hepatic steatosis triggering hepatic injury by lipotoxicity and can progress to nonalcoholic fatty liver disease. Regulated in development and DNA damage response 1 (REDD1) is a stimulation-inducible protein that involves in cell death, proliferation, and metabolism. In this study, we identified REDD1 induction in palmitic acid (PA)-mediated hepatocytotoxicity and its role. First, we compared the PA effects on cell viability and lipogenesis in Huh7, HepG2, and H4IIE cells, respectively. Huh7 cells were found to be the optimal cells for studying PA-induced lipotoxicity based on dose-dependent cytotoxicity and the induction of proteins related to lipogenesis. REDD1 was upregulated in PA-treated hepatocytes via a transcription-dependent mechanism. Moreover, we observed that REDD1 overexpression protected PA-derived cytotoxicity and intracellular lipid accumulation. We also examined the elevated REDD1 levels in the livers of three mice models with fatty liver: ethanol-containing diet, highcholesterol diet, or high-fat diet-fed mice. Our findings proved that REDD1 may be a candidate molecule that attenuates susceptibility to PA-induced lipotoxic liver injury

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marra, F., A. Gastaldelli, G. Svegliati Baroni, G. Tell, and C. Tiribelli (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends. Mol. Med. 14: 72–81.

    Article  CAS  Google Scholar 

  2. Kotronen, A. and H. Yki-Jarvinen (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28: 27–38.

    Article  CAS  Google Scholar 

  3. Schaffer, J. E. (2003) Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol. 14: 281–287.

    Article  CAS  Google Scholar 

  4. Angulo, P. (2002) Nonalcoholic fatty liver disease. N. Engl. J. Med. 346: 1221–1231.

    Article  CAS  Google Scholar 

  5. Unger, R. H., G. O. Clark, P. E. Scherer, and L. Orci (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta. 1801: 209–214.

    Article  CAS  Google Scholar 

  6. Leamy, A. K., R. A. Egnatchik, and J. D. Young (2013) Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 52: 165–174.

    Article  CAS  Google Scholar 

  7. Alkhouri, N., C. Carter-Kent, and A. E. Feldstein (2011) Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert. Rev. Gastroenterol. Hepatol. 5: 201–212.

    Article  Google Scholar 

  8. Ibrahim, S. H., R. Kohli, and G. J. Gores (2011) Mechanisms of lipotoxicity in NAFLD and clinical implications. J. Pediatr. Gastroenterol. Nutr. 53: 131–140.

    Article  CAS  Google Scholar 

  9. Baylin, A., E. K. Kabagambe, X. Siles, and H. Campos (2002) Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 76: 750–757.

    Article  CAS  Google Scholar 

  10. Lu, J., Q. Wang, L. Huang, H. Dong, L. Lin, N. Lin, F. Zheng, and J. Tan (2012) Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator. Endocrinology. 153: 5275–5284.

    Article  CAS  Google Scholar 

  11. Muller, C., A. Gardemann, G. Keilhoff, D. Peter, I. Wiswedel, and L. Schild (2012) Prevention of free fatty acid-induced lipid accumulation, oxidative stress, and cell death in primary hepatocyte cultures by a Gynostemma pentaphyllum extract. Phytomedicine. 19: 395–401.

    Article  CAS  Google Scholar 

  12. Ellisen, L. W., K. D. Ramsayer, C. M. Johannessen, A. Yang, H. Beppu, K. Minda, J. D. Oliner, F. McKeon, and D. A. Haber (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell. 10: 995–1005.

    Article  CAS  Google Scholar 

  13. Shoshani, T., A. Faerman, I. Mett, E. Zelin, T. Tenne, S. Gorodin, Y. Moshel, S. Elbaz, A. Budanov, A. Chajut, H. Kalinski, I. Kamer, A. Rozen, O. Mor, E. Keshet, D. Leshkowitz, P. Einat, R. Skaliter, and E. Feinstein (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell Biol. 22: 2283–2293.

    Article  CAS  Google Scholar 

  14. Cho, S. S., K. M. Kim, J. H. Yang, J. Y. Kim, S. J. Park, S. J. Kim, J. K. Kim, I. J. Cho, and S. H. Ki (2018) Induction of REDD1 via AP-1 prevents oxidative stress-mediated injury in hepatocytes. Free Radic. Biol. Med. 124: 221–231.

    Article  CAS  Google Scholar 

  15. Whitney, M. L., L. S. Jefferson, and S. R. Kimball (2009) ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 379: 451–455.

    Article  CAS  Google Scholar 

  16. Molitoris, J. K., K. S. McColl, S. Swerdlow, M. Matsuyama, M. Lam, T. H. Finkel, S. Matsuyama, and C. W. Distelhorst (2011) Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J. Biol. Chem. 286: 30181-30189.

  17. Brugarolas, J., K. Lei, R. L. Hurley, B. D. Manning, J. H. Reiling, E. Hafen, L. A. Witters, L. W. Ellisen, and W. G. Kaelin Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18: 2893–2904.

    Article  CAS  Google Scholar 

  18. Regazzetti, C., F. Bost, Y. Le Marchand-Brustel, J. F. Tanti, and S. Giorgetti-Peraldi (2010) Insulin induces REDD1 expression through hypoxia-inducible factor 1 activation in adipocytes. J. Biol. Chem. 285: 5157–5164.

    Article  CAS  Google Scholar 

  19. Williamson, D. L., C. M. Dungan, A. M. Mahmoud, J. T. Mey, B. K. Blackburn, and J. M. Haus (2015) Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309: R855–R863.

    Article  CAS  Google Scholar 

  20. Dennis, M. D., S. R. Kimball, P. E. Fort, and L. S. Jefferson (2015) Regulated in development and DNA damage 1 is necessary for hyperglycemia-induced vascular endothelial growth factor expression in the retina of diabetic rodents. J. Biol. Chem. 290: 3865–3874.

    Article  CAS  Google Scholar 

  21. Dumas, K., C. Ayachi, J. Gilleron, S. Lacas-Gervais, F. Pastor, F. B. Favier, P. Peraldi, N. Vaillant, L. Yvan-Charvet, S. Bonnafous, S. Patouraux, R. Anty, A. Tran, P. Gual, M. Cormont, J. F. Tanti, and S. Giorgetti-Peraldi (2020) REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high-fat diet. FASEB J. 34: 5046–5060.

    Article  CAS  Google Scholar 

  22. Han, J. Y., S. Lee, J. H. Yang, S. Kim, J. Sim, M. G. Kim, T. C. Jeong, S. K. Ku, I. J. Cho, and S. H. Ki (2015) Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation. J. Ginseng. Res. 39: 105–115.

    Article  Google Scholar 

  23. Jin, S. H., J. H. Yang, B. Y. Shin, K. Seo, S. M. Shin, I. J. Cho, and S. H. Ki (2013) Resveratrol inhibits LXRalpha-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicol. Appl. Pharmacol. 271: 95–105.

    Article  CAS  Google Scholar 

  24. Yang, J. H., S. S. Cho, K. M. Kim, J. Y. Kim, E. J. Kim, E. Y. Park, J. H. Lee, and S. H. Ki (2017) Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. J. Funct. Foods. 38: 529–539.

    Article  CAS  Google Scholar 

  25. Kanuri, G. and I. Bergheim (2013) In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 14: 11963–11980.

    Article  Google Scholar 

  26. Bertola, A., S. Mathews, S. H. Ki, H. Wang, and B. Gao (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 8: 627–637.

    Article  Google Scholar 

  27. Malhi, H., S. F. Bronk, N. W. Werneburg, and G. J. Gores (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281: 12093–12101.

    Article  CAS  Google Scholar 

  28. Zeng, X., M. Zhu, X. Liu, X. Chen, Y. Yuan, L. Li, J. Liu, Y. Lu, J. Cheng, and Y. Chen (2020) Correction to: Oleic acid ameliorates palmitic acid induced hepatocellular lipotoxicity by inhibition of ER stress and pyroptosis. Nutr. Metab. (Lond). 17: 18.

    Article  Google Scholar 

  29. Joshi-Barve, S., S. S. Barve, K. Amancherla, L. Gobejishvili, D. Hill, M. Cave, P. Hote, and C. J. McClain (2007) Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 46: 823–830.

    Article  CAS  Google Scholar 

  30. Zhao, P., J. M. Mao, S. Y. Zhang, Z. Q. Zhou, Y. Tan, and Y. Zhang (2014) Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis. Oncol. Lett. 8: 765–769.

    Article  CAS  Google Scholar 

  31. Deng, J. F., T. Sinks, L. Elliot, D. Smith, M. Singal, and L. Fine (1991) Characterisation of respiratory health and exposures at a sintered permanent magnet manufacturer. Br. J. Ind. Med. 48: 609–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin, H. O., S. K. Seo, S. H. Woo, E. S. Kim, H. C. Lee, D. H. Yoo, S. An, T. B. Choe, S. J. Lee, S. I. Hong, C. H. Rhee, J. I. Kim, and I. C. Park (2009) Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress. Free Radic. Biol. Med. 46: 1158–1167.

    Article  CAS  Google Scholar 

  33. Ajuwon, K. M. and M. E. Spurlock (2005) Palmitate activates the NF-kB transcription factor and induces IL-6 and TNFα expression in 3T3-L1 adipocytes. J. Nutr. 8: 1841–1846.

    Article  Google Scholar 

  34. Liu, L., R. Martin, G. Kohler, and C. Chan (2013) Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp. Neurol. 248: 482–490.

    Article  CAS  Google Scholar 

  35. Chien, H. C., P. L. Greenhaff, and D. Constantin-Teodosiu (2020) PPARδ and FOXO1 mediate palmitate-induced inhibition of muscle pyruvate dehydrogenase complex and CHO oxidation, events reversed by electrical pulse stimulation. Int. J. Mol. Sci. 21: 5942.

    Article  CAS  Google Scholar 

  36. Chang, B., G. Liu, G. Yang, I. Mercado-Uribe, M. Huang, and J. Liu (2009) REDD1 is required for RAS-mediated transformation of human ovarian epithelial cells. Cell Cycle. 8: 780–786.

    Article  CAS  Google Scholar 

  37. Wang, Z., M. H. Malone, M. J. Thomenius, F. Zhong, F. Xu, and C. W. Distelhorst (2003) Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J. Biol. Chem. 278: 27053–27058.

    Article  CAS  Google Scholar 

  38. Horak, P., A. R. Crawford, D. D. Vadysirisack, Z. M. Nash, M. P. DeYoung, D. Sgroi, and L. W. Ellisen (2010) Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc. Natl. Acad. Sci. USA. 107: 4675–4680.

    Article  CAS  Google Scholar 

  39. Caron, A., D. Richard, and M. Laokabte (2015) The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35: 321–348.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research fund from Chosun University (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hwan Ki.

Ethics declarations

Animal experiments were carried out based on the guidelines of the Institutional Animal Use and Care Committee at Chosun University (Gwangju, Korea), and followed by ARRIVE guidelines.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interest Statement

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kim, K.M., Yang, J.H. et al. Regulated in Development and DNA Damage Response 1 Protects Hepatocytes Against Palmitate-induced Lipotoxicity. Biotechnol Bioproc E 27, 70–78 (2022). https://doi.org/10.1007/s12257-021-0140-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0140-z

Keywords

Navigation