Skip to main content
Log in

Interaction Between Hepatocytes and Proximal Tubular Epithelial Cells in Hypoxia-induced Lipotoxicity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Hypoxia is one of the main pathogenetic factors in liver, an organ that exhibits lower oxygen pressure than that in other organs. Liver hepatocytes have an approximately 10-fold higher oxygen demand than other cells for homeostatic metabolism. Moreover, several clinical studies have indicated that liver diseases might aggravate some kidney diseases. Therefore, it is critical to develop in vitro models for investigating diseases resulting from the interaction of liver and kidney under hypoxia. In this study, transwell plates were used to evaluate the interaction between proximal tubular epithelial cells and hepatocytes under hypoxia, which was induced using a mixture of sodium sulfite and cobalt chloride. Increased relative lactate dehydrogenase release was not observed in single cultures of proximal tubular epithelial cells and hepatocytes under hypoxic conditions. Compared to single cultures of proximal tubular epithelial cells and hepatocytes, relative lactate dehydrogenase releases were 1.70 and 1.50 times higher in co-cultures of proximal tubular epithelial cells and hepatocytes, respectively. Gene expressions of several markers such as serine palmitoyltransferase light chain 1 and ceramide synthetase 2 were analyzed to examine lipotoxicity under hypoxia. In addition, treatment with myriocin, a well-known ceramide inhibitor, reduced cytotoxicity in proximal tubular epithelial cells. The results of this study suggest that hypoxia might not be cytotoxic in separate monolayer cultures of proximal epithelial cells and hepatocytes. However, it might be cytotoxic due to interactions between these cell types, possibly due to an accumulation of ceramide, a result that can be described as lipotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kusminski, C. M., S. Shetty, L. Orci, R. H. Unger, and P. E. Scherer (2009) Diabetes and apoptosis: lipotoxicity. Apoptosis., 14: 1484–1495.

    Article  CAS  PubMed  Google Scholar 

  2. Jun, S. Y. and H. S. Shin (2021) Analysis and prediction of surface condition of artificial skin based on CNN and ConvLSTM. Biotechnol. Bioprocess Eng., 26: 369–374.

    Article  CAS  Google Scholar 

  3. Mukherjee, S., K. R. Aseer, and J. W. Yun (2020) Roles of macrophage colony stimulating factor in white and brown adipocytes. Biotechnol. Bioprocess Eng., 25: 29–38.

    Article  CAS  Google Scholar 

  4. Goh, S., D. Kim, M. H. Choi, H. J. Shin, and S. Kwon (2019) Effects of bamboo stem extracts on adipogenic differentiation and lipid metabolism regulating genes. Biotechnol. Bioprocess Eng., 24: 454–463.

    Article  CAS  Google Scholar 

  5. Chang, S. Y., E. J. Weber, V. S. Sidorenko, A. Chapron, C. K. Yeung, C. Gao, Q. Mao, D. Shen, J. Wang, T. A. Rosenquist, K. G. Dickman, T. Neumann, A. P. Grollman, E. J. Kelly, J. Himmelfarb, and D. L. Eaton (2017) Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight., 2: e95978.

    Article  PubMed Central  Google Scholar 

  6. Cho, H., D. Kim, and K. Kim (2018) Engineered co-culture strategies using stem cells for facilitated chondrogenic differentiation and cartilage repair. Biotechnol. Bioprocess Eng., 23: 261–270.

    Article  CAS  Google Scholar 

  7. Theobald, J., A. Ghanem, P. Wallisch, A. A. Banaeiyan, M. A. Andrade-Navarro, K. Taškova, M. Haltmeier, A. Kurtz, H. Becker, S. Reuter, R. Mrowka, X. Cheng, and S. Wölfl (2018) Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater. Sci. Eng., 4: 78–89.

    Article  CAS  PubMed  Google Scholar 

  8. Lau, Y. Y., Y. H. Chen, T. T. Liu, C. Li, X. Cui, R. E. White, and K. C. Cheng (2004) Evaluation of a novel in vitro Caco-2 hepatocyte hybrid system for predicting in vivo oral bioavailability. Drug Metab. Dispos., 32: 937–942.

    CAS  PubMed  Google Scholar 

  9. Li, C., T. Liu, X. Cui, A. S. Uss, and K. C. Cheng (2007) Development of in vitro pharmacokinetic screens using Caco-2, human hepatocyte, and Caco-2/human hepatocyte hybrid systems for the prediction of oral bioavailability in humans. J. Biomol. Screen., 12: 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  10. Li, A. P., C. Bode, and Y. Sakai (2004) A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem. Biol. Interact., 150: 129–136.

    Article  CAS  PubMed  Google Scholar 

  11. Hamden, K., B. Jaouadi, S. Carreau, S. Bejar, and A. Elfeki (2010) Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions. Biotechnol. Bioprocess Eng., 15: 407–413.

    Article  CAS  Google Scholar 

  12. Palatini, P. and S. De Martin (2016) Pharmacokinetic drug interactions in liver disease: An update. World J. Gastroenterol., 22: 1260–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bale, S. S., L. Moore, M. Yarmush, and R. Jindal (2016) Emerging in vitro liver technologies for drug metabolism and inter-organ interactions. Tissue Eng. Part B Rev., 22: 383–394.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Suzuki, T., S. Shinjo, T. Arai, M. Kanai, and N. Goda (2014) Hypoxia and fatty liver. World J. Gastroenterol., 20: 15087–15097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Byrne, C. D. (2009) Hypoxia and non-alcoholic fatty liver disease. Clin. Sci., 118: 397–400.

    Article  Google Scholar 

  16. Jungermann, K. and T. Kietzmann (2000) Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology., 31: 255–260.

    Article  CAS  PubMed  Google Scholar 

  17. Kietzmann, T. (2017) Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol., 11: 622–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, J. W., J. Ko, C. Ju, and H. K. Eltzschig (2019) Hypoxia signaling in human diseases and therapeutic targets. Exp. Mol. Med., 51: 1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nath, B. and G. Szabo (2012) Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology., 55: 622–633.

    Article  CAS  PubMed  Google Scholar 

  20. Balis, U. J., K. Behnia, B. Dwarakanath, S. N. Bhatia, S. J. Sullivan, M. L. Yarmush, and M. Toner (1999) Oxygen consumption characteristics of porcine hepatocytes. Metab. Eng., 1: 49–62.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, J. S. and S. W. Cho (2012) Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnol. Bioprocess Eng., 17: 427–438.

    Article  CAS  Google Scholar 

  22. Aboelsoud, M. M., A. I. Javaid, M. O. Al-Qadi, and J. H. Lewis (2017) Hypoxic hepatitis - its biochemical profile, causes and risk factors of mortality in critically-ill patients: a cohort study of 565 patients. J. Crit. Care., 41: 9–15.

    Article  CAS  PubMed  Google Scholar 

  23. Waseem, N. and P. H. Chen (2016) Hypoxic hepatitis: a review and clinical update. J. Clin. Transl. Hepatol., 4: 263–268.

    PubMed  PubMed Central  Google Scholar 

  24. Paternostro, C., E. David, E. Novo, and M. Parola (2010) Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World J. Gastroenterol., 16: 281–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chalasani, N., Z. Younossi, J. E. Lavine, A. M. Diehl, E. M. Brunt, K. Cusi, M. Charlton, and A. J. Sanyal (2012) The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology., 55: 2005–2023.

    Article  PubMed  Google Scholar 

  26. Musso, G., R. Gambino, J. H. Tabibian, M. Ekstedt, S. Kechagias, M. Hamaguchi, R. Hultcrantz, H. Hagström, S. K. Yoon, P. Charatcharoenwitthaya, J. George, F. Barrera, S. Hafliðadóttir, E. S. Björnsson, M. J. Armstrong, L. J. Hopkins, X. Gao, S. Francque, A. Verrijken, Y. Yilmaz, K. D. Lindor, M. Charlton, R. Haring, M. M. Lerch, R. Rettig, H. Völzke, S. Ryu, G. Li, L. L. Wong, M. Machado, H. Cortez-Pinto, K. Yasui, and M. Cassader (2014) Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med., 11: e1001680.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang, B., C. Ren, Y. Li, Y. Lu, W. Li, Y. Wu, Y. Gao, P. J. Ratcliffe, H. Liu, and C. Zhang (2011) Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in Caenorhabditis elegans. J. Biol. Inorg. Chem., 16: 267–274.

    Article  CAS  PubMed  Google Scholar 

  28. Abudara, V., R. G. Jiang, and C. Eyzaguirre (2002) Behavior of junction channels between rat glomus cells during normoxia and hypoxia. J. Neurophysiol., 88: 639–649.

    Article  PubMed  Google Scholar 

  29. Klimova, T. and N. Chandel (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ., 15: 660–666.

    Article  CAS  PubMed  Google Scholar 

  30. Ghaly, A. E. and R. Kok (1988) The effect of sodium sulfite and cobalt chloride on the oxygen transfer coefficient. Appl. Biochem. Biotechnol., 19: 259–270.

    Article  CAS  Google Scholar 

  31. Al Okail, M. S. (2010) Cobalt chloride, a chemical inducer of hypoxia-inducible factor-1a in U251 human glioblastoma cell line. J. Saudi Chem. Soc., 14: 197–201.

    Article  CAS  Google Scholar 

  32. Kim, S. M., D. H. Kim, and D. J. Oh (2020) Development and evaluation of cell culture devices with the gas-permeable membrane. Biotechnol. Bioprocess Eng., 25: 62–70.

    Article  CAS  Google Scholar 

  33. Kraus, N. A., F. Ehebauer, B. Zapp, B. Rudolphi, B. J. Kraus, and D. Kraus (2016) Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte., 5: 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Livak, K. J. and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods., 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  35. Lindner, K., U. Uhlig, and S. Uhlig (2005) Ceramide alters endothelial cell permeability by a nonapoptotic mechanism. Br. J. Pharmacol., 145: 132–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chaurasia, B. and S. A. Summers (2015) Ceramides-lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab., 26: 538–550.

    Article  CAS  PubMed  Google Scholar 

  37. Kurek, K., P. Wiesiolek-Kurek, D. M. Piotrowska, B. Lukaszuk, A. Chabowski, and M. Zendzian-Piotrowska (2014) Inhibition of ceramide de novo synthesis with myriocin affects lipid metabolism in the liver of rats with streptozotocin-induced type 1 diabetes. Biomed Res. Int., 2014: 980815.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang, R. X., Q. Pan, X. L. Liu, D. Zhou, F. Z. Xin, Z. H. Zhao, R. N. Zhang, J. Zeng, L. Qiao, C. X. Hu, G. W. Xu, and J. G. Fan (2019) Therapeutic effect and autophagy regulation of myriocin in nonalcoholic steatohepatitis. Lipids Health Dis., 18: 179.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qiu, X., X. Zhou, Y. Miao, and B. Li (2018) An in vitro method for nephrotoxicity evaluation using HK-2 human kidney epithelial cells combined with biomarkers of nephrotoxicity. Toxicol. Res., 7: 1205–1213.

    Article  CAS  Google Scholar 

  40. Tanaka, T., M. Narazaki, and T. Kishimoto (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 6: a016295.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sivertsson, L., M. Ek, M. Darnell, I. Edebert, M. Ingelman-Sundberg, and E. P. A. Neve (2010) CYP3A4 catalytic activity is induced in confluent Huh7 hepatoma cells. Drug Metab. Dispos., 38: 995–1002.

    Article  CAS  PubMed  Google Scholar 

  42. Mylonis, I., G. Simos, and E. Paraskeva (2019) Hypoxia-inducible factors and the regulation of lipid metabolism. Cells., 8: 214.

    Article  CAS  PubMed Central  Google Scholar 

  43. Zhang, T., C. Suo, C. Zheng, and H. Zhang (2019) Hypoxia and metabolism in metastasis. Adv. Exp. Med. Biol., 1136: 87–95.

    Article  CAS  PubMed  Google Scholar 

  44. Watt, M. J. and G. R. Steinberg (2008) Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J., 414: 313–325.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, L., X. Shi, C. S. Choi, G. I. Shulman, K. Klaus, K. S. Nair, G. J. Schwartz, Y. Zhang, I. J. Goldberg, and Y. H. Yu (2009) Paradoxical coupling of triglyceride synthesis and fatty acid oxidation in skeletal muscle overexpressing DGAT1. Diabetes., 58: 2516–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Timmers, S., J. de Vogel-van den Bosch, M. K. C. Hesselink, D. van Beurden, G. Schaart, M. J. Ferraz, M. Losen, P. Martinez-Martinez, M. H. De Baets, J. M. F. G. Aerts, and P. Schrauwen} (2011) Paradoxical increase in TAG and DAG content parallel the insulin sensitizing effect of unilateral DGAT1 overexpression in rat skeletal muscle. PLoS One., 6: e14503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bosma, M., S. Kersten, M. K. C. Hesselink, and P. Schrauwen (2012) Re-evaluating lipotoxic triggers in skeletal muscle: relating intramyocellular lipid metabolism to insulin sensitivity. Prog. Lipid Res., 51: 36–49.

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, L. W. and M. Ashcroft (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell. Mol. Life Sci., 76: 1759–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Semenza, G. L. (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J., 405: 1–9.

    Article  CAS  PubMed  Google Scholar 

  50. DeBerardinis, R. J. and N. S. Chandel (2020) We need to talk about the Warburg effect. Nat. Metab., 2: 127–129.

    Article  PubMed  Google Scholar 

  51. Brownsey, R. W., A. N. Boone, J. E. Elliott, J. E. Kulpa, and W. M. Lee (2006) Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans., 34: 223–227.

    Article  CAS  PubMed  Google Scholar 

  52. Taxiarchis, A., H. Mahdessian, A. Silveira, R. M. Fisher, and F. M. Van't Hooft (2019) PNPLA2 influences secretion of triglyceriderich lipoproteins by human hepatoma cells. J. Lipid Res., 60: 1069–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neuschwander-Tetri, B. A. (2010) Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology., 52: 774–788.

    Article  PubMed  Google Scholar 

  54. Chhabra, R. and M. Nanjundan (2020) Lysophosphatidic acid reverses Temsirolimus-induced changes in lipid droplets and mitochondrial networks in renal cancer cells. PLoS One., 15: e0233887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin, J., Z. Lu, Y. Li, L. A. Cowart, M. F. Lopes-Virella, and Y. Huang (2018) Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLoS One., 13: e0193343.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Amemiya, F., S. Maekawa, Y. Itakura, A. Kanayama, A. Matsui, S. Takano, T. Yamaguchi, J. Itakura, T. Kitamura, T. Inoue, M. Sakamoto, K. Yamauchi, S. Okada, A. Yamashita, N. Sakamoto, M. Itoh, and N. Enomoto (2008) Targeting lipid metabolism in the treatment of hepatitis C virus infection. J. Infect. Dis., 197: 361–370.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, X., D. E. Cooper, A. A. Cluntun, M. O. Warmoes, S. Zhao, M. A. Reid, J. Liu, P. J. Lund, M. Lopes, B. A. Garcia, K. E. Wellen, D. G. Kirsch, and J. W. Locasale (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell., 175: 502–513. e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan, J., J. J. Kamphorst, J. D. Rabinowitz, and T. Shlomi (2013) Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux. J. Biol. Chem., 288: 31363–31369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Senkal, C. E., M. F. Salama, A. J. Snider, J. J. Allopenna, N. A. Rana, A. Koller, Y. A. Hannun, and L. M. Obeid (2017) Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab., 25: 686–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruiz-Argüello, M. B., G. Basáñez, F. M. Goñi, and A. Alonso (1996) Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J. Biol. Chem., 271: 26616–26621.

    Article  PubMed  Google Scholar 

  61. Montes, L. R., M. B. Ruiz-Argüello, F. M. Goñi, and A. Alonso (2002) Membrane restructuring via ceramide results in enhanced solute efflux. J. Biol. Chem. 277: 11788–11794.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A4A1016793), a National Research Foundation of Korea (NRF-2020R1F1A1048494), and an Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonjo Kwon.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Heo, Y.J. & Kwon, S. Interaction Between Hepatocytes and Proximal Tubular Epithelial Cells in Hypoxia-induced Lipotoxicity. Biotechnol Bioproc E 27, 30–39 (2022). https://doi.org/10.1007/s12257-021-0137-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0137-7

Keywords

Navigation