Skip to main content
Log in

Two-component Adsorption Characteristics of Paclitaxel and 10-deacetylpaclitaxel from Taxus chinensis onto Sylopute

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A batch experiment was conducted to investigate the effect of 10-deacetylpaclitaxel (10-DAP) on the adsorption characteristics of paclitaxel in a two-component adsorption of paclitaxel and 10-DAP by varying the concentration of 10-DAP (1,000–3,000 ppm) and adsorption temperature (298–318 K). The maximum adsorbed amount and adsorption rate constant of paclitaxel decreased by 10.1–21.3% and 5.5–28.6% at 298 K, 6.0–20.4% and 5.8–28.4% at 308 K, and 6.2–17.7% and 7.5–29.0% at 318 K, respectively, compared with the single-component adsorption of paclitaxel (control). These results show that the decrease rate was higher as the concentration of 10-DAP increased. In addition, as the concentration of 10-DAP increased, the adsorption rate constant decreased at all the adsorption temperatures, indicating that 10-DAP inhibited the adsorption of paclitaxel. The intraparticle diffusion rates decreased by 2.6–6.6% (10-DAP 1,000 ppm), 3.6–8.2% (10-DAP 2,000 ppm), and 8.0–10.0% (10-DAP 3,000 ppm) compared with the control. The thermodynamic study showed that the two-component adsorption was physical, endothermic, irreversible, and nonspontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, H. J. and J. H. Kim (2020) Removal of residual toluene and methyl tertiary butyl ether from amorphous paclitaxel by simple rotary evaporation with alcohol pretreatment. Biotechnol. Bioprocess Eng. 25: 86–93.

    Article  CAS  Google Scholar 

  2. Seca, A. M. L. and D. C. G. A. Pinto (2018) Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 19: 263.

    Article  Google Scholar 

  3. Kang, H. J. and J. H. Kim (2019) Removal of residual chloroform from amorphous paclitaxel pretreated by alcohol. Korean J. Chem. Eng. 36: 1965–1970.

    Article  CAS  Google Scholar 

  4. Pyo, S. H., H. J. Choi, and B. H. Han (2006) Large-scale purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel, semi-synthetic precursors of paclitaxel, from cell cultures of Taxus chinensis. J. Chromatogr. A. 1123: 15–21.

    Article  CAS  Google Scholar 

  5. Seo, H. W. and J. H. Kim (2019) Ultrasound-assisted fractional precipitation of paclitaxel from Taxus chinensis cell cultures. Process Biochem. 87: 238–243.

    Article  CAS  Google Scholar 

  6. Choi, H. K., J. S. Son, G. H. Na, S. S. Hong, Y. S. Park, and J. Y. Song (2002) Mass production of paclitaxel by plant cell culture. Korean J. Plant Biotechnol. 29: 59–62.

    Article  Google Scholar 

  7. Yoo, K. W. and J. H. Kim (2018) Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 23: 532–540.

    Article  CAS  Google Scholar 

  8. Lee, C. G. and J. H. Kim (2016) Separation behavior of paclitaxel and its semi-synthetic precursor 10-deacetylpaclitaxel from plant cell cultures. Korean Chem. Eng. Res. 54: 89–93.

    Article  CAS  Google Scholar 

  9. Lim, Y. S. and J. H. Kim (2017) Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dehydroxybaccatin III from Taxus chinensis onto Sylopute. J. Chem. Thermodyn. 115: 261–268.

    Article  CAS  Google Scholar 

  10. Kim, J. H., I. S. Kang, H. K. Choi, S. S. Hong, and H. S. Lee (2002) A novel prepurification for paclitaxel from plant cell cultures. Process Biochem. 37: 679–682.

    Article  CAS  Google Scholar 

  11. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim (2004) A large-scale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985–1991.

    Article  CAS  Google Scholar 

  12. Pyo, S. H., B. K. Song, C. H. Ju, B. H. Han, and H. J. Choi (2005) Effects of absorbent treatment on the purification of paclitaxel from cell cultures of Taxus chinensis and yew tree. Process Biochem. 40: 1113–1117.

    Article  CAS  Google Scholar 

  13. Lee, J. Y. and J. H. Kim (2011) Development and optimization of a novel simultaneous microwave-assisted extraction and adsorbent treatment process for separation and recovery of paclitaxel from plant cell cultures. Sep. Purif. Technol. 80: 240–245.

    Article  CAS  Google Scholar 

  14. Oh, H. J., H. R. Jang, K. Y. Jung, and J. H. Kim (2013) Evaluation of surface area of mesoporous silica adsorbents for separation and purification of paclitaxel. Microporous Mesoporous Mater. 180: 109–113.

    Article  CAS  Google Scholar 

  15. Kang, H. J. and J. H. Kim (2019) Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto Sylopute. Biotechnol. Bioprocess Eng. 24: 513–521.

    Article  CAS  Google Scholar 

  16. Lee, S. H. and J. H. Kim (2019) Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis. Process Biochem. 76: 187–193.

    Article  CAS  Google Scholar 

  17. Kim, H. S. and J. H. Kim (2017) Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride. Process Biochem. 56: 163–170.

    Article  CAS  Google Scholar 

  18. Maneechakr, P. and S. Karnjanakom (2017) Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: Surface chemistry, isotherm, kinetic and thermodynamic studies. J. Chem. Thermodyn. 106: 104–112.

    Article  CAS  Google Scholar 

  19. Cho, D. N. and J. H. Kim (2020) Isotherm, kinetic and thermodynamic characteristics for adsorption of acenaphthene onto Sylopute. Korean Chem. Eng. Res. 58: 127–134.

    CAS  Google Scholar 

  20. Kang, D. Y. and J. H. Kim (2021) Ultrasonic cavitation bubble- and gas bubble-assisted adsorption of paclitaxel from Taxus chinensis onto Sylopute. Korean J. Chem. Eng. 38: 2286–2293.

    Article  Google Scholar 

  21. Wu, F. C., R. L. Tseng, and R. S. Juang (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interface Sci. 283: 49–56.

    Article  CAS  Google Scholar 

  22. Marczewski, A. W., M. Seczkowska, A. Derylo-Marczewska, and M. Blachnio (2016) Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: effect of temperature. Adsorption. 22: 777–790.

    Article  CAS  Google Scholar 

  23. Kim, Y. S. and J. H. Kim (2019) Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J. Chem. Thermodyn. 130: 104–113.

    Article  CAS  Google Scholar 

  24. Shin, H. S. and J. H. Kim (2016) Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochem. 51: 917–924.

    Article  CAS  Google Scholar 

  25. Boparai, H. K., M. Joseph, and D. M. O’Carroll (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186: 458–465.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, DY., Kim, JH. Two-component Adsorption Characteristics of Paclitaxel and 10-deacetylpaclitaxel from Taxus chinensis onto Sylopute. Biotechnol Bioproc E 27, 145–155 (2022). https://doi.org/10.1007/s12257-021-0123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0123-0

Keywords

Navigation