Skip to main content
Log in

Characterization of a Novel Acetogen Clostridium sp. JS66 for Production of Acids and Alcohols: Focusing on Hexanoic Acid Production from Syngas

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Acetogen bacteria have been spotlighted to produce fuels and chemicals from CO, H2, and CO2, main components of waste gas from the steel industry and syngas derived from lignocellulose and plastics. The production of C2∼C4 acids/alcohols from syngas has been widely studied; however, there are much less studies on the production of C6 or higher acids/alcohols due to the limited number of acetogen producing C6 or higher carbon compounds. In this study, we report a newly isolated strain Clostridium sp. JS66 that has the ability to produce C2, C4, and C6 acids/alcohols from syngas and glucose. This isolate exhibited 99.9% 16S rRNA similarity and 64.5% digital DNA-DNA hybridization value to Clostridium carboxidivorans P7T, a known C6 acid/alcohol-producing acetogen. Characterization of gas fermentation using CO:CO2:H2 [30:30:40] was carried out at different temperature (25∼37°C), initial pH (5.5∼7.0), agitation speed (50∼150 rpm), and total pressure (100∼150 kPa). When the agitation speed decreased from 150 rpm to 100 rpm at 150 kPa, hexanoic acid production significantly increased from 0.20 g/L to 0.47 g/L. Notably, the production of hexanoic acid was slightly higher at 100 kPa and 125 kPa than at 150 kPa, despite the lower supply of syngas. Moreover, the chain elongation tendency to form C6 acid/ alcohol was enhanced at lower pressures. These results demonstrate that Clostridium sp. JS66 has the potential to produce C6 compounds from syngas, extending a spectrum of C6-producing acetogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, H. J., K. Y. Kim, K. M. Lee, S. M. Lee, G. Gong, M. K. Oh, and Y. Um (2019) Enhanced butyric acid production using mixed biomass of brown algae and rice straw by Clostridium tyrobutyricum ATCC25755. Bioresour. Technol. 273: 446–453.

    Article  CAS  Google Scholar 

  2. Spirito, C. M., H. Richter, K. Rabaey, A. J. M. Stams, and L. T. Angenent (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr. Opin. Biotechnol. 27: 115–122.

    Article  CAS  Google Scholar 

  3. Ko, J. K., T. Enkh-Amgalan, G. Gong, Y. Um, and S. M. Lee (2020) Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid. GCB Bioenergy. 12: 90–100.

    Article  CAS  Google Scholar 

  4. Thi, H. N., S. Park, H. Li, and Y. K. Kim (2020) Medium compositions for the improvement of productivity in syngas fermentation with Clostridium autoethanogenum. Biotechnol. Bioprocess Eng. 25: 493–501.

    Article  CAS  Google Scholar 

  5. Al-asadi, M., N. Miskolczi, and Z. Eller (2020) Pyrolysis-gasification of wastes plastics for syngas production using metal modified zeolite catalysts under different ratio of nitrogen/oxygen. J. Clean. Prod. 271: 122186.

    Article  CAS  Google Scholar 

  6. Bertsch, J. and V. Müller (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Biofuels. 8: 210.

    Article  Google Scholar 

  7. Im, H. S., C. Kim, Y. E. Song, J. Baek, C. H. Im, and J. R. Kim (2019) Isolation of novel CO converting microorganism using zero valent iron for a bioelectrochemical system (BES). Biotechnol. Bioprocess Eng. 24: 232–239.

    Article  CAS  Google Scholar 

  8. Schuchmann, K. and V. Müller (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12: 809–821.

    Article  CAS  Google Scholar 

  9. Abrini, J., H. Naveau, and E. J. Nyns (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161: 345–351.

    Article  CAS  Google Scholar 

  10. Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Evol. Microbiol. 27: 355–361.

    CAS  Google Scholar 

  11. Tanner, R. S., L. M. Miller, and D. Yang (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in Clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43: 232–236.

    Article  CAS  Google Scholar 

  12. Liou, J. S. C., D. L. Balkwill, G. R. Drake, and R. S. Tanner (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbiol. 55: 2085–2091.

    Article  CAS  Google Scholar 

  13. Chang, I. S., B. H. Kim, D. H. Kim, R. W. Lovitt, and H. C. Sung (1999) Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium. J. Biosci. Bioeng. 88: 682–685.

    Article  CAS  Google Scholar 

  14. Sun, X., H. K. Atiyeh, R. L. Huhnke, and R. S. Tanner (2019) Syngas fermentation process development for production of biofuels and chemicals: A review. Bioresour. Technol. Rep. 7: 100279.

    Article  Google Scholar 

  15. Angenent, L. T., H. Richter, W. Buckel, C. M. Spirito, K. J. J. Steinbusch, C. M. Plugge, D. P. B. T. B. Strik, T. I. M. Grootscholten, C. J. N. Buisman, and H. V. M. Hamelers (2016) Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ. Sci. Technol. 50: 2796–2810.

    Article  CAS  Google Scholar 

  16. Jeon, B. S., B. C. Kim, Y. Um, and B. I. Sang (2010) Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl. Microbiol. Biotechnol. 88: 1161–1167.

    Article  CAS  Google Scholar 

  17. Zhu, X., Y. Zhou, Y. Wang, T. Wu, X. Li, D. Li, and Y. Tao (2017) Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol. Biofuels. 10: 102.

    Article  Google Scholar 

  18. Choi, K., B. S. Jeon, B. C. Kim, M. K. Oh, Y. Um, and B. I. Sang (2013) In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Appl. Biochem. Biotechnol. 171: 1094–1107.

    Article  CAS  Google Scholar 

  19. San-Valero, P., Á. Fernández-Naveira, M. C. Veiga, and C. Kennes (2019) Influence of electron acceptors on hexanoic acid production by Clostridium kluyveri. J. Environ. Manage. 242: 515–521.

    Article  CAS  Google Scholar 

  20. Gildemyn, S., B. Molitor, J. G. Usack, M. Nguyen, K. Rabaey, and L. T. Angenent (2017) Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation. Biotechnol. Biofuels. 10: 83.

    Article  Google Scholar 

  21. Diender, M., I. Parera Olm, M. Gelderloos, J. J. Koehorst, P. J. Schaap, A. J. M. Stams, and D. Z. Sousa (2019) Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas. Sci. Rep. 9: 18081.

    Article  CAS  Google Scholar 

  22. Ramachandriya, K. D., D. K. Kundiyana, M. R. Wilkins, J. B. Terrill, H. K. Atiyeh, and R. L. Huhnke (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl. Energy. 112: 289–299.

    Article  CAS  Google Scholar 

  23. Ramió-Pujol, S., R. Ganigué, L. Bañeras, and J. Colprim (2015) Incubation at 25°C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour. Technol. 192: 296–303.

    Article  Google Scholar 

  24. Fernández-Naveira, Á., M. C. Veiga, and C. Kennes (2017) H-B-E (Hexanol-Butanol-Ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J. Chem. Technol. Biotechnol. 92: 712–731.

    Article  Google Scholar 

  25. Phillips, J. R., H. K. Atiyeh, R. S. Tanner, J. R. Torres, J. Saxena, M. R. Wilkins, and R. L. Huhnke (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour. Technol. 190: 114–121.

    Article  CAS  Google Scholar 

  26. Kim, M., H. S. Oh, S. C. Park, and J. Chun (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346–351.

    Article  CAS  Google Scholar 

  27. Chun, J., A. Oren, A. Ventosa, H. Christensen, D. R. Arahal, M. S. da Costa, A. P. Rooney, H. Yi, X. W. Xu, S. De Meyer, and M. E. Trujillo (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461–466.

    Article  CAS  Google Scholar 

  28. Valgepea, K., R. de Souza Pinto Lemgruber, T. Abdalla, S. Binos, N. Takemori, A. Takemori, Y. Tanaka, R. Tappel, M. Köpke, S. D. Simpson, L. K. Nielsen, and E. Marcellin (2018) H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biotechnol. Biofuels. 11: 55.

    Article  Google Scholar 

  29. Kang, S., Y. Song, S. Jin, J. Shin, J. Bae, D. R. Kim, J. K. Lee, S. C. Kim, S. Cho, and B. K. Cho (2020) Adaptive laboratory evolution of Eubacterium limosum ATCC 8486 on carbon monoxide. Front. Microbiol. 11: 402.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2008943). The authors also appreciate the additional support through NRF funded by the Ministry of Science and ICT (Information & Communication Technology) (Grant No. NRF-2020M1A 2A2080847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsoon Um.

Additional information

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, KY., Ko, J.K. et al. Characterization of a Novel Acetogen Clostridium sp. JS66 for Production of Acids and Alcohols: Focusing on Hexanoic Acid Production from Syngas. Biotechnol Bioproc E 27, 89–98 (2022). https://doi.org/10.1007/s12257-021-0122-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0122-1

Keywords

Navigation