Skip to main content
Log in

In silico Study on Binding Specificities of Cellular Retinol Binding Protein and Its Q108R Mutant

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cellular retinol binding proteins (CRBPs) are industrially important lipocalin proteins which can be potential targets for drug development, scaffold engineering, and biosensor development. The introduction of Q108R site-directed mutagenesis in this protein changes the ligand-binding specificities, but its structural effect is still unclear. In this study, the ligand-binding modes of CRBP and its Q108R mutant were studied by molecular docking approach. The specific interaction between the terminal functional groups of retinoids and 108th residue of the protein was determined to be conserved in the ligand-binding complexes, but the interaction patterns of non-binding complexes were identified to be significantly different from those of binding complexes. These results suggest that the specific interaction between 108 Q or R residue of CRBP(I) and terminal functional group of retinoid may be crucial in the formation of stable ligand conformation in the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blomhoff, R. and H. K. Blomhoff (2006) Overview of retinoid metabolism and function. J. Neurobiol. 66: 606–630.

    Article  CAS  Google Scholar 

  2. Noy, N. (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem. J. 348: 481–495.

    Article  CAS  Google Scholar 

  3. Blomhoff, R., M. H. Green, T. Berg, and K. R. Norum (1990) Transport and storage of vitamin A. Science. 250: 399–404.

    Article  CAS  Google Scholar 

  4. Kono, N. and H. Arai (2015) Intracellular transport of fat-soluble vitamins A and E. Traffic. 16: 19–34.

    Article  CAS  Google Scholar 

  5. Chytil, F. and D. E. Ong (1983) Cellular retinol- and retinoic acid-binding proteins. Adv. Nutr. Res. 5: 13–29.

    Article  CAS  Google Scholar 

  6. Jones, T. A., T. Bergfors, J. Sedzik, and T. Unge (1988) The three-dimensional structure of P2 myelin protein. EMBO J. 7: 1597–1604.

    Article  CAS  Google Scholar 

  7. Ishaque, A., T. Hofmann, and E. H. Eylar (1982) The complete amino acid sequence of the rabbit P2 protein. J. Biol. Chem. 257: 592–595.

    Article  CAS  Google Scholar 

  8. Ong, D. E. (1984) A novel retinol-binding protein from rat. Purification and partial characterization. J. Biol. Chem. 259: 1476–1482.

    Article  CAS  Google Scholar 

  9. Bashor, M. M., D. O. Toft, and F. Chytil (1973) In vitro binding of retinol to rat-tissue components. Proc Natl Acad Sci U S A. 70: 3483–3487.

    Article  CAS  Google Scholar 

  10. Kawaguchi, R., J. Yu, M. Ter-stepanian, M. Zhong, G. Cheng, Q. Yuan, M. Jin, G. H. Travis, D. Ong, and H. Sun (2011) Receptor-mediated cellular uptake mechanism that couples to intracellular storage. ACS Chem. Biol. 6: 1041–1051.

    Article  CAS  Google Scholar 

  11. Penzes, P. and J. L. Napoli (1999) Holo-cellular retinol-binding protein: Distinction of ligand-binding affinity from efficiency as substrate in retinal biosynthesis. Biochemistry. 38: 2088–2093.

    Article  CAS  Google Scholar 

  12. Herr, F. M. and D. E. Ong (1992) Differential interaction of lecithin-retinol acyltransferase with cellular retinol binding proteins. Biochemistry. 31: 6748–6755.

    Article  CAS  Google Scholar 

  13. Orlandi, A., A. Ferlosio, A. Ciucci, A. Francesconi, B. Lifschitz-Mercer, G. Gabbiani, L. G. Spagnoli, and B. Czernobilsky (2006) Cellular retinol binding protein-1 expression in endometrial hyperplasia and carcinoma: diagnostic and possible therapeutic implications. Mod. Pathol. 19: 797–803.

    Article  CAS  Google Scholar 

  14. Napoli, J. L. (2017) Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol. Ther. 173: 19–33.

    Article  CAS  Google Scholar 

  15. Munussami, G., S. Sokalingam, J. R. Kim, and S. G. Lee (2018) In silico study on retinoid-binding modes in human RBP and ApoD lipocalins. Biotechnol. Bioprocess Eng. 23: 158–167.

    Article  CAS  Google Scholar 

  16. Cowan, S. W., M. E. Newcomer, and T. A. Jones (1993) Crystallographic studies on a family of cellular lipophilic transport proteins: Refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with All-trans-retinol. J. Mol. Biol. 230: 1225–1246.

    Article  CAS  Google Scholar 

  17. Malpeli, G., M. Stoppini, M. C. Zapponi, C. Folli, and R. Berni (1995) Interactions with retinol and retinoids of bovine cellular retinol-binding protein. Eur. J. Biochem. 229: 486–493.

    Article  CAS  Google Scholar 

  18. Franzoni, L., C. Lucke, C. Perez, D. Cavazzini, M. Rademacher, C. Ludwig, A. Spisni, G. L. Rossi, and H. Ruterjans (2002) Structure and backbone dynamics of apo- and holo-cellular retinol-binding protein in solution. J. Biol. Chem. 277: 21983–21997.

    Article  CAS  Google Scholar 

  19. Silvaroli, J. A., J. M. Arne, S. Chelstowka, P. D. Kiser, S. Banerjee, and M. Golczak (2016) Ligand binding induces conformational changes in human cellular retinol-binding protein 1 (CRBP1) revealed by atomic resolution crystal structures. J. Biol. Chem. 291: 8528–8540.

    Article  CAS  Google Scholar 

  20. Stump, D. G., R. S. Lloyd, and F. Chytil (1991) Site-directed mutagenesis of rat cellular retinol-binding protein. Alteration in binding specificity resulting from mutation of glutamine 108 to arginine. J. Biol. Chem. 266: 4622–4630.

    Article  CAS  Google Scholar 

  21. Franzoni, L., D. Cavazzini, G. L. Rossi, and C. Lucke (2010) New insights on the protein-ligand interaction differences between the two primary cellular retinol carriers. J. Lipid Res. 51: 1332–1343.

    Article  CAS  Google Scholar 

  22. Jakoby, M. G., K. R. Miller, J. J. Toner, A. Bauman, L. Cheng, E. Li, and D. P. Cistola (1992) Ligand-protein electrostatic interactions govern the specificity of retinol- and fatty acid-binding proteins. Biochemistry. 32: 872–878.

    Article  Google Scholar 

  23. Sacchettini, J. C., J. I. Gordon, and L. Banaszak (1989) Crystal structure of rat intestinal fatty-acid-binding protein: Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J. Mol. Biol. 208: 327–339.

    Article  CAS  Google Scholar 

  24. Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785–2791.

    Article  CAS  Google Scholar 

  25. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

  26. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin (2004) UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605–1612.

    Article  CAS  Google Scholar 

  27. BIOVIA, Dassault Systèmes, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes.

  28. Zhang, Y. R., Y. Q. Zhao, and J. F. Huang (2012) Retinoid-binding proteins: Similar protein architectures bind similar ligands via completely different ways. PLoS One. 7: e36772.

    Article  CAS  Google Scholar 

  29. Porté, S., F. X. Ruiz, J. Giménez, I. Molist, S. Alvarez, M. Domínguez, R. Alvarez, A. R. de Lera, X. Parés, and J. Farrés (2013) Aldo-keto reductases in retinoid metabolism: Search for substrate specificity and inhibitor selectivity. Chem. Biol. Interact. 202: 186–194.

    Article  Google Scholar 

  30. Merugu, R. and K. V. Singh (2018) Molecular docking of amitriptyline to ceruloplasmin, retinol-binding protein, and serum albumin. Asian J. Pharm. Clin. Res. 11: 169–175.

    Article  Google Scholar 

  31. Sokalingam, S., G. Munussami, J. R. Kim, and S. G. Lee (2018) Validation on the molecular docking efficiency of lipocalin family of proteins. J. Ind. Eng. Chem. 67: 293–300.

    Article  CAS  Google Scholar 

  32. Kim, J. Y., H. W. Yoo, P. G. Lee, S. G. Lee, J. H. Seo, and B. G. Kim (2019) In vivo protein evolution, next generation protein engineering strategy: from random approach to target-specific approach. Biotechnol. Bioprocess Eng. 24: 85–94.

    Article  CAS  Google Scholar 

  33. Jebamani, P., S. Sokalingam, D. K. Sriramulu, S. T. Jung, and S. G. Lee (2020) Assessment of computational modeling of Fc-Fc receptor binding through protein-protein docking tool. Biotechnol. Bioprocess Eng. 25: 734–741.

    Article  CAS  Google Scholar 

  34. Skerra, A. (2000) Lipocalins as a scaffold. Biochim. Biophys. Acta. 1482: 337–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Gu Lee.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Sriramulu, D.K. & Lee, SG. In silico Study on Binding Specificities of Cellular Retinol Binding Protein and Its Q108R Mutant. Biotechnol Bioproc E 27, 126–134 (2022). https://doi.org/10.1007/s12257-021-0112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0112-3

Keywords

Navigation