Skip to main content
Log in

Assessment of Computational Modeling of Fc-Fc Receptor Binding Through Protein-protein Docking Tool

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Structural information of Fc-Fc receptor interaction may contribute to the design of drugs or therapeutic antibodies associated with the interaction. Computational protein-protein docking can be employed in structural study of protein-protein interaction, but its efficiency and reliability are still unstable and need to be validated and optimized for respective target protein complexes. In this study, we investigated and assessed the computational modeling efficiency of Fc-FcγR complex through HADDOCK by defining five different sets of active residues, a major parameter to determine the prediction efficiency of HADDOCK. The binding residues identified experimentally or the residues in the binding pocket were confirmed to be efficient active residues to achieve a high prediction efficiency, and too narrower or wider specification of active residues led to poor prediction efficiency. Most binding residues and crucial molecular interactions such as conserved interactions and hydrogen bonds in the crystal structure were reproduced in the best model. The HADDOCK docking condition determined in this study is expected to be applied to the computational characterization of various Fc-Fc receptor complexes and mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schroeder, H. W. Jr. and L. Cavacini (2010) Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125: S41–S52.

    Article  Google Scholar 

  2. Raghavan, M. and P. J. Bjorkman (1996) Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12: 181–220.

    Article  CAS  Google Scholar 

  3. Jung, S. T., W. Kelton, T. H. Kang, D. T. W. Ng, J. T. Andersen, I. Sandlie, C. A. Sarkar, and G. Georgiou (2013) Effective phagocytosis of low Her2 tumor cell lines with engineered, aglycosylated IgG displaying high FcgammaRIIa affinity and selectivity. ACS Chem. Biol. 8: 368–375.

    Article  CAS  Google Scholar 

  4. Nimmerjahn, F. and J. V. Ravetch (2010) Antibody-mediated modulation of immune responses. Immunol. Rev. 236: 265–275.

    Article  CAS  Google Scholar 

  5. Jiang, X. R., A. Song, S. Bergelson, T. Arroll, B. Parekh, K. May, S. Chung, R. Strouse, A. Mire-Sluis, and M. Schenerman (2011) Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 10: 101–111.

    Article  CAS  Google Scholar 

  6. Jo, M., H. S. Kwon, K. H. Lee, J. C. Lee, and S. T. Jung (2018) Engineered aglycosylated full-length IgG Fc variants exhibiting improved FcgammaRIIIa binding and tumor cell clearance. MAbs. 10: 278–289.

    Article  CAS  Google Scholar 

  7. Sondermann, P., R. Huber, V. Oosthuizen, and U. Jacob (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature. 406: 267–273.

    Article  CAS  Google Scholar 

  8. Smith, G. R. and M. J. E. Sternberg (2002) Prediction of proteinprotein interactions by docking methods. Curr. Opin. Struct. Biol. 12: 28–35.

    Article  Google Scholar 

  9. Weng, Z., K. Gulukota, D. E. Vaughn, P. J. Bjorkman, and C. DeLisi (1998) Computational determination of the structure of rat Fc bound to the neonatal Fc receptor. J. Mol. Biol. 282: 217–225.

    Article  CAS  Google Scholar 

  10. Vakser, I. A. (2014) Protein-protein docking: from interaction to interactome. Biophys. J. 107: 1785–1793.

    Article  CAS  Google Scholar 

  11. van Zundert, G. C. P., J. P. G. L. M. Rodrigues, M. Trellet, C. Schmitz, P. L. Kastritis, E. Karaca, A. S. J. Melquiond, M. van Dijk, S. J. de Vries, and A. M. J. J. Bonvin (2016) The HADDOCK2.2 Web sderver: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428: 720–725.

    Article  CAS  Google Scholar 

  12. Dominguez, C., R. Boelens, and A. M. J. J. Bonvin (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125: 1731–1737.

    Article  CAS  Google Scholar 

  13. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.

  14. Wallace, A. C., R. A. Laskowski, and J. M. Thornton (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8: 127–134.

    Article  CAS  Google Scholar 

  15. Laskowski, R. A. and M. B. Swindells (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51: 2778–2786.

    Article  CAS  Google Scholar 

  16. Humphrey, W., A. Dalke, and K. Schulten (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14: 33–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. 2018R1A2B6001670). The authors declare no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebamani, P., Sokalingam, S., Sriramulu, D.K. et al. Assessment of Computational Modeling of Fc-Fc Receptor Binding Through Protein-protein Docking Tool. Biotechnol Bioproc E 25, 734–741 (2020). https://doi.org/10.1007/s12257-020-0050-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0050-5

Keywords

Navigation