Skip to main content
Log in

VEGF-overexpressed Human Tonsil-derived Mesenchymal Stem Cells with PEG/HA-based Cryogels for Therapeutic Angiogenesis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Therapeutic neovascularization through cell transplantation has widely been investigated as a cure for ischemia. However, there are several limitations to this technique, including low survival rate of the therapeutic cells and inflammation at the transplanted sites. Polyethylene glycol (PEG)/hyaluronic acid (HA)-based cryogels are used to overcome these problems as they provide cell adhesion sites owing to their interconnected macroporous structure, which increases cell viability in combination with the cryogel’s intrinsic biocompatibility. Furthermore, vascular endothelial growth factor (VEGF) plays a significant role in pro-angiogenesis of endothelial cells (ECs) and it has been demonstrated that injection of VEGF-secreting cells could enhance neovascularization at the sites of injection. In the present study, we developed a PEG diacrylate (PEGDA)/glycidyl methacrylate-HA (GMHA)-based cryogel system seeded with VEGF-transfected human tonsil-derived mesenchymal stem cells to induce enhanced neovascularization in murine hind-limb ischemia. Addition of GMHA allowed the PEGDA cryogel to enhance cell metabolism, including attachment and proliferation. The secreted VEGF affected human umbilical vein endothelial cells by enhancing in vitro angiogenesis. Finally, our cell-seeded cryogel successfully facilitated regeneration of blood flow and damaged tissue in a hind-limb ischemia model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ouriel, K. (2001) Peripheral arterial disease. Lancet. 358: 1257–1264.

    Article  CAS  PubMed  Google Scholar 

  2. Norgren, L., W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 45: S5–S67.

    Article  PubMed  Google Scholar 

  3. Jude, E. B., I. Eleftheriadou, and N. Tentolouris (2010) Peripheral arterial disease in diabetes—a review. Diabet. Med. 27: 4–14.

    Article  CAS  PubMed  Google Scholar 

  4. Rajagopalan, S., E. R. Mohler 3rd, R. J. Lederman, F. O. Mendelsohn, J. F. Saucedo, C. K. Goldman, J. Blebea, J. Macko, P. D. Kessler, H. S. Rasmussen, and B. H. Annex (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease. Circulation. 108: 1933–1938.

    Article  CAS  PubMed  Google Scholar 

  5. Inampudi, C., E. Akintoye, T. Ando, and A. Briasoulis (2018) Angiogenesis in peripheral arterial disease. Curr. Opin. Pharmacol. 39: 60–67.

    Article  CAS  PubMed  Google Scholar 

  6. Cooke, J. P. and D. W. Losordo (2015) Modulating the vascular response to limb ischemia. Circ. Res. 116: 1561–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samura, M., T. Hosoyama, Y. Takeuchi, K. Ueno, N. Morikage, and K. Hamano (2017) Therapeutic strategies for cell-based neovascularization in critical limb ischemia. J. Transl. Med. 15: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mount, N. M., S. J. Ward, P. Kefalas, and J. Hyllner (2015) Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370: 20150017.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manigandan, S. and J. W. Yun (2020) Urolithin A induces brown-like phenotype in 3T3-L1 white adipocytes via β3-adrenergic receptor-p38 MAPK signaling pathway. Biotechnol. Bioprocess Eng. 25: 345–355.

    Article  CAS  Google Scholar 

  10. Tang, Y. L., Y. Tang, Y. C. Zhang, K. Qian, L. Shen, and M. I. Phillips (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol. 46: 1339–1350.

    Article  CAS  PubMed  Google Scholar 

  11. Li, W., N. Ma, L. L. Ong, C. Nesselmann, C. Klopsch, Y. Ladilov, D. Furlani, C. Piechaczek, J. M. Moebius, K. Lützow, A. Lendlein, C. Stamm, R. K. Li, and G. Steinhoff (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 25: 2118–2127.

    Article  CAS  PubMed  Google Scholar 

  12. Hua, P., J. Liu, J. Tao, J. Liu, and S. Yang (2015) Influence of caspase-3 silencing on the proliferation and apoptosis of rat bone marrow mesenchymal stem cells under hypoxia. Int. J. Clin. Exp. Med. 8: 1624–1633.

    PubMed  PubMed Central  Google Scholar 

  13. Tsubokawa, T., K. Yagi, C. Nakanishi, M. Zuka, A. Nohara, H. Ino, N. Fujino, T. Konno, M. Kawashiri, H. Ishibashi-Ueda, N. Nagaya, and M. Yamagishi (2010) Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 298: H1320–H1329.

    Article  CAS  PubMed  Google Scholar 

  14. Henderson, T. M. A., K. Ladewig, D. N. Haylock, K. M. McLean, and A. J. O’Connor (2013) Cryogels for biomedical applications. J. Mater. Chem. B. 1: 2682–2695.

    Article  CAS  PubMed  Google Scholar 

  15. Göppert, B., T. Sollich, P. Abaffy, A. Cecilia, J. Heckmann, A. Neeb, A. Bäcker, T. Baumbach, F. J. Gruhl, and A. C. B. Cato (2016) Superporous poly(ethylene glycol) diacrylate cryogel with a defined elastic modulus for prostate cancer cell research. Small. 12: 3985–3994.

    Article  PubMed  Google Scholar 

  16. Rezaeeyazdi, M., T. Colombani, A. Memic, and A. S. Bencherif (2018) Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications. Materials. 11: 1374.

    Article  PubMed Central  Google Scholar 

  17. Han, M. E., S. H. Kim, H. D. Kim, H. G. Yim, S. A. Bencherif, T. I. Kim, and N. S. Hwang (2016) Extracellular matrix-based cryogels for cartilage tissue engineering. Int. J. Biol. Macromol. 93: 1410–1419.

    Article  CAS  PubMed  Google Scholar 

  18. Dong, R., X. Zhao, B. Guo, and P. X. Ma (2016) Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl. Mater. Interfaces. 8: 17138–17150.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, H. D., Y. Lee, Y. Kim, Y. Hwang, and N. S. Hwang (2017) Biomimetically reinforced polyvinyl alcohol-based hybrid scaffolds for cartilage tissue engineering. Polymers. 9: 655.

    Article  PubMed Central  Google Scholar 

  20. Mattheolabakis, G., L. Milane, A. Singh, and M. M. Amiji (2015) Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J. Drug Target. 23: 605–618.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharya, D. S., D. Svechkarev, J. J. Souchek, T. K. Hill, M. A. Taylor, A. Natarajan, and A. M. Mohs (2017) Impact of structurally modifying hyaluronic acid on CD44 interaction. J. Mater. Chem B. 5: 8183–8192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basak, S. (2020) The age of multistimuli-responsive nanogels: The finest evolved nano delivery system in biomedical sciences. Biotechnol. Bioprocess Eng. 25: 655–669.

    Article  CAS  Google Scholar 

  23. Kim, T. H., D. S. Yoo, and J. C. Kim (2019) In vitro dermal delivery of epidermal growth factor using redox-responsive cubosomes. Biotechnol. Bioprocess Eng. 24: 273–281.

    Article  CAS  Google Scholar 

  24. Kim, G., Y. S. Park, Y. Lee, Y. M. Jin, D. H. Choi, K. H. Ryu, Y. J. Park, K. D. Park, and I. Jo (2018) Tonsil-derived mesenchymal stem cell-embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. PLoS One. 13: e0200111.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Matsumoto, R., T. Omura, M. Yoshiyama, T. Hayashi, S. Inamoto, K. R. Koh, K. Ohta, Y. Izumi, Y. Nakamura, K. Akioka, Y. Kitaura, K. Takeuchi, and J. Yoshikawa (2005) Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25: 1168–1173.

    Article  CAS  PubMed  Google Scholar 

  26. Cho, H. M., P. H. Kim, H. K. Chang, Y. M. Shen, K. Bonsra, B. J. Kang, S. Y. Yum, J. H. Kim, S. Y. Lee, M. C. Choi, H. H. Kim, G. Jang, and J. Y. Cho (2017) Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: Potential implications for the treatment of myocardial infarction. Stem Cells Transl. Med. 6: 1040–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi, Y. H., S. H. Kim, I. S. Kim, K. Kim, S. K. Kwon, and N. S. Hwang (2019) Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization. Acta Biomater. 95: 285–296.

    Article  CAS  PubMed  Google Scholar 

  28. Rajagopalan, S., E. Mohler 3rd, R. J. Lederman, J. Saucedo, F. O. Mendelsohn, J. Olin, J. Blebea, C. Goldman, J. D. Trachtenberg, M. Pressler, H. Rasmussen, B. H. Annex, and A. T. Hirsch (2003) Regional angiogenesis with vascular endothelial growth factor (VEGF) in peripheral arterial disease: Design of the RAVE trial. Am. Heart J. 145: 1114–1118.

    Article  CAS  Google Scholar 

  29. Nikol, S., I. Baumgartner, E. Van Belle, C. Diehm, A. Visona, M. C. Capogrossi, N. Ferreira-Maldent, A. Gallino, M. G. Wyatt, L. D. Wijesinghe, M. Fusari, D. Stephan, J. Emmerich, G. Pompilio, F. Vermassen, E. Pham, V. Grek, M. Coleman, and F. Meyer (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol. Ther. 16: 972–978.

    Article  CAS  PubMed  Google Scholar 

  30. Belch, J., W. R. Hiatt, I. Baumgartner, I. V. Driver, S. Nikol, L. Norgren, and E. Van Belle (2011) Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 377: 1929–1937.

    Article  CAS  PubMed  Google Scholar 

  31. Matyas, L., K. L. Schulte, J. A. Dormandy, L. Norgren, O. Sowade, G. Grotzbach, U. Palmer-Kazen, G. M. Rubanyi, and E. Wahlberg (2005) Arteriogenic gene therapy in patients with unreconstructable critical limb ischemia: a randomized, placebo-controlled clinical trial of adenovirus 5-delivered fibroblast growth factor-4. Hum. Gene. Ther. 16: 1202–1211.

    Article  CAS  PubMed  Google Scholar 

  32. Mukherjee, S., K. R. Aseer, and J. W. Yun (2020) Roles of macrophage colony stimulating factor in white and brown adipocytes. Biotechnol. Bioprocess Eng. 25: 29–38.

    Article  CAS  Google Scholar 

  33. Taniyama, Y., R. Morishita, M. Aoki, H. Nakagami, K. Yamamoto, K. Yamazaki, K. Matsumoto, T. Nakamura, Y. Kaneda, and T. Ogihara (2001) Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene. Ther. 8: 181–189.

    Article  CAS  PubMed  Google Scholar 

  34. Powell, R. J., M. Simons, F. O. Mendelsohn, G. Daniel, T. D. Henry, M. Koga, R. Morishita, and B. H. Annex (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 118: 58–65.

    Article  CAS  PubMed  Google Scholar 

  35. Kibbe, M. R., A. T. Hirsch, F. O. Mendelsohn, M. G. Davies, H. Pham, J. Saucedo, W. Marston, W. B. Pyun, S. K. Min, B. G. Peterson, A. Comerota, D. Choi, J. Ballard, R. A. Bartow, D. W. Losordo, W. Sherman, V. Driver, and E. C. Perin (2016) Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene. Ther. 23: 306–312.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta, K., S. Kshirsagar, W. Li, L. Gui, S. Ramakrishnan, P. Gupta, P. Y. Law, and R. P. Hebbel (1999) VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp. Cell Res. 247: 495–504.

    Article  CAS  PubMed  Google Scholar 

  37. Abid, M. R., S. Guo, T. Minami, K. C. Spokes, K. Ueki, C. Skurk, K. Walsh, and W. C. Aird (2004) Vascular endothelial growth factor activates PI3K/Akt/Forkhead signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24: 294–300.

    Article  CAS  PubMed  Google Scholar 

  38. Karar, J. and A. Maity (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 4: 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, Y. G., U. Park, B. J. Park, and K. Kim (2019) Exosome-mediated bidirectional signaling between mesenchymal stem cells and chondrocytes for enhanced chondrogenesis. Biotechnol. Bioprocess Eng. 24: 734–744.

    Article  CAS  Google Scholar 

  40. You, J. B., Y. Yoo, M. S. Oh, and S. G. Im (2014) Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. ACS Appl. Mater. Interfaces. 6: 4005–4010.

    Article  CAS  PubMed  Google Scholar 

  41. Hwang, Y., C. Zhang, and S. Varghese (2010) Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties. J. Mater. Chem. 20: 345–351.

    Article  CAS  Google Scholar 

  42. Jeong, H., E. S. Lee, G. Jung, J. Park, B. Jeong, K. H. Ryu, N. S. Hwang, and H. Lee (2016) Bioreducible-cationic poly(amido amine)s for enhanced gene delivery and osteogenic differentiation of tonsil-derived mesenchymal stem cells. J. Biomed. Nanotechnol. 12: 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  43. Choi, Y. H., S. C. Heo, Y. W. Kwon, H. D. Kim, S. H. L. Kim, I. H. Jang, J. H. Kim, and N. S. Hwang (2015) Injectable PLGA microspheres encapsulating WKYMVM peptide for neova-scularization. Acta Biomater. 25: 76–85.

    Article  CAS  PubMed  Google Scholar 

  44. Choi, Y. H., S. H. Kim, I. G. Kim, J. H. Lee, and S. K. Kwon (2019) Injectable basic fibroblast growth factor-loaded alginate/hyaluronic acid hydrogel for rejuvenation of geriatric larynx. Acta Biomater. 89: 104–114.

    Article  CAS  PubMed  Google Scholar 

  45. Memic, A., T. Colombani, L. J. Eggermont, M. Rezaeeyazdi, J. Steingold, Z. J. Rogers, K. J. Navare, H. S. Mohammed, and S. A. Bencherif (2019) Latest advances in cryogel technology for biomedical applications. Adv. Therap. 2: 1800114.

    Article  Google Scholar 

  46. Chang, K. H., H. T. Liao, and J. P. Chen (2013) Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies. Acta Biomater. 9: 9012–9026.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, B. S. and D. J. Mooney (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16: 224–230.

    Article  CAS  PubMed  Google Scholar 

  48. Baxamusa, S. H., S. G. Im, and K. K. Gleason (2009) Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates. Phys. Chem. Chem. Phys. 11: 5227–5240.

    Article  CAS  PubMed  Google Scholar 

  49. Yu, S. J., K. Pak, M. J. Kwak, M. Joo, B. J. Kim, M. S. Oh, J. Baek, H. Park, G. Choi, D. H. Kim, J. Choi, Y. Choi, J. Shin, H. Moon, E. Lee, and S. G. Im (2018) Initiated chemical vapor deposition: A versatile tool for various device applications. Adv. Eng. Mater. 20: 1700622.

    Article  Google Scholar 

  50. Tsibouklis, J., P. Graham, P. J. Eaton, J. R. Smith, T. G. Nevell, J. D. Smart, and R. J. Ewen (2000) Poly(perfluoroalkyl methacrylate) film structures: Surface organization phenomena, surface energy determinations, and force of adhesion measurements. Macromolecules. 33: 8460–8465.

    Article  CAS  Google Scholar 

  51. Lee, H. S., H. Kim, J. H. Lee, and J. B. Kwak (2019) Fabrication of a conjugated fluoropolymer film using one-step iCVD process and its mechanical durability. Coatings. 9: 430.

    Article  CAS  Google Scholar 

  52. Lafuma, A. and D. Quéré (2003) Superhydrophobic states. Nat. Mater. 2: 457–460.

    Article  CAS  PubMed  Google Scholar 

  53. Yoo, Y., J. B. You, W. Choi, and S. G. Im (2013) A stacked polymer film for robust superhydrophobic fabrics. Polym. Chem. 4: 1664–1671.

    Article  CAS  Google Scholar 

  54. Youngblood, J. P. and N. R. Sottos (2008) Bioinspired materials for self-cleaning and self-healing. MRS Bulletin. 33: 732–741.

    Article  CAS  Google Scholar 

  55. Lin, C. C. and K. S. Anseth (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26: 631–643.

    Article  CAS  PubMed  Google Scholar 

  56. Parlato, M., S. Reichert, N. Barney, and W. L. Murphy (2014) Poly(ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromol. Biosci. 14: 687–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jia, X. and K. L. Kiick (2009) Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9: 140–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, H. J., A. Sen, S. Bae, J. S. Lee, and K. Webb (2015) Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration. Acta Biomater. 14: 43–52.

    Article  CAS  PubMed  Google Scholar 

  59. Connors, R. C., J. J. Muir, Y. Liu, G. R. Reiss, P. C. Kouretas, M. G. Whitten, T. K. Sorenson, G. D. Prestwich, and D. A. Bull (2007) Postoperative pericardial adhesion prevention using Carbylan-SX in a rabbit model. J. Surg. Res. 140: 237–242.

    Article  CAS  PubMed  Google Scholar 

  60. Zheng Shu, X., Y. Liu, F. S. Palumbo, Y. Luo, and G. D. Prestwich (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 25: 1339–1348.

    Article  PubMed  Google Scholar 

  61. Burdick, J. A. and G. D. Prestwich (2011) Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23: H41–H56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Solis, M. A., Y. H. Chen, T. Y. Wong, V. Z. Bittencourt, Y. C. Lin, and L. L. H. Huang (2012) Hyaluronan regulates cell behavior: A potential niche matrix for stem cells. Biochem. Res. Int. 2012: 346972.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lam, J., N. F. Truong, and T. Segura (2014) Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater. 10: 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, B. J., D. W. Kang, H. Y. Park, J. S. Song, J. M. Kim, J. Y. Jang, J. C. Lee, S. G. Wang, J. S. Jung, and S. C. Shin (2016) Isolation and localization of mesenchymal stem cells in human palatine tonsil by W5C5 (SUSD2). Cell. Physiol. Biochem. 38: 83–93.

    Article  CAS  PubMed  Google Scholar 

  65. Oh, S. Y., Y. M. Choi, H. Y. Kim, Y. S. Park, S. C. Jung, J. W. Park, S. Y. Woo, K. H. Ryu, H. S. Kim, and I. Jo (2019) Application of tonsil-derived mesenchymal stem cells in tissue regeneration: Concise review. Stem Cells. 37: 1252–1260.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shin, S. C., Y. Seo, H. Y. Park, D. W. Jung, T. H. Shin, H. Son, Y. K. Kim, J. C. Lee, E. S. Sung, J. Y. Jang, H. S. Kim, and B. J. Lee (2018) Regenerative potential of tonsil mesenchymal stem cells on surgical cutaneous defect. Cell Death Dis. 9: 183.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Koh, R. H., Y. Jin, B. J. Kang, and N. S. Hwang (2017) Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater. 53: 318–328.

    Article  CAS  PubMed  Google Scholar 

  68. Park, S., Y. Choi, N. Jung, Y. Yu, K. H. Ryu, H. S. Kim, I. Jo, B. O. Choi, and S. C. Jung (2016) Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int. J. Mol. Med. 37: 1209–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Enis, D. R., B. R. Shepherd, Y. Wang, A. Qasim, C. M. Shanahan, P. L. Weissberg, M. Kashgarian, J. S. Pober, and J. S. Schechner (2005) Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proc. Natl. Acad. Sci. USA. 102: 425–430.

    Article  CAS  PubMed  Google Scholar 

  70. Ye, L., H. K. Haider, R. Tan, W. Toh, P. K. Law, W. Tan, L. Su, W. Zhang, R. Ge, Y. Zhang, Y. Lim, and E. K. W. Sim (2007) Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation. 116: I113–I120.

    Article  CAS  PubMed  Google Scholar 

  71. Cho, S. W., F. Yang, S. M. Son, H. J. Park, J. J. Green, S. Bogatyrev, Y. Mei, S. Park, R. Langer, and D. G. Anderson (2012) Therapeutic angiogenesis using genetically engineered human endothelial cells. J. Control. Release. 160: 515–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, F., S. W. Cho, S. M. Son, S. R. Bogatyrev, D. Singh, J. J. Green, Y. Mei, S. Park, S. H. Bhang, B. S. Kim, R. Langer, and D. G. Anderson (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. U S A. 107: 3317–3322.

    Article  CAS  PubMed  Google Scholar 

  73. Carmeliet, P. (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology. 69 Suppl 3: 4–10.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, X., J. Kim, C. A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, and D. J. Mooney (2011) Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. U S A. 108: 67–72.

    Article  CAS  PubMed  Google Scholar 

  75. Drury, J. L. and D. J. Mooney (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24: 4337–4351.

    Article  CAS  PubMed  Google Scholar 

  76. Costa, A. M. S., M. Alatorre-Meda, C. Alvarez-Lorenzo, and J. F. Mano (2015) Superhydrophobic surfaces as a tool for the fabrication of hierarchical spherical polymeric carriers. Small. 11: 3648–3652.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Health Industry Development Institute (KHIDI-HI19C1352), by the National Research Foundation (NRF-2021R1A2C2008821, NRF-2021M3E5E5096460, and NRF-2019R1I1A1A01059554), and by the Ministry of Trade, Industry and Energy (MOTIE-20016553), through funded by the Korea government. The Institute of Engineering Research at Seoul National University provided research facilities for this work.

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

All surgery procedures were approved by the Seoul National University Animal Care Committee (protocol #SNU-130226-2).

Informed consent was obtained from the patients at the Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University Hospital (Seoul, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung-Ha So or Nathaniel S. Hwang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Choi, J.H., Choi, Y.H. et al. VEGF-overexpressed Human Tonsil-derived Mesenchymal Stem Cells with PEG/HA-based Cryogels for Therapeutic Angiogenesis. Biotechnol Bioproc E 27, 17–29 (2022). https://doi.org/10.1007/s12257-021-0061-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0061-x

Keywords

Navigation