Skip to main content
Log in

Biotransformation of Ginsenoside Rb1 to Ginsenoside F2 by Recombinant β-glucosidase from Rat Intestinal Enterococcus gallinarum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Panax ginseng is used as a traditional medicine and functional food in several Asian countries. Intestinal bacteria play an important role in the metabolism of components and the production of bioactive metabolites following oral consumption of P. ginseng. We researched the genetic and biochemical properties of the gene encoding β-glucosidase of rat intestinal bacteria that carries out the hydrolytic metabolic reactions. We isolated the ginsenoside-transforming Enterococcus gallinarum GM2 from rat colonic contents. After cloning the GH family 3 domain protein β-glucosidase gene (Bgy3) from E. gallinarum, we expressed and purified recombinant Bgy3 protein and then characterized it. We used LC-MS/MS to determine the metabolic profile of ginsenoside Rb1 generated by Bgy3. At pH 7.0 and 40°C, Bgy3 selectively removed the outer sugars of C-20 and C-3, and it produced ginsenoside F2 from ginsenoside Rb1, with a corresponding molar conversion yield of 45%. Bgy3 was found to hydrolyze the ginsenoside Rb1 according to the following pathways: Rb1 → gypenoside XVII → F2, or Rb1 → Rd → F2. Bgy3 functions in the metabolism of ginsenoside Rb1, effectively converting it into ginsenoside F2. This study clearly elucidated the relationship between intestinal bacteria and the metabolism of ginsenoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, W. W., J. Zhao, F. L. Zhong, W. J. Zhu, J. Jiang, S. Wu, D. C. Yang, D. Li, and L. H. Quan (2017) Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry. J. Ginseng Res. 41: 540–547.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dong, W. W., F. L. Xuan, F. L. Zhong, J. Jiang, S. Wu, D. Li, and L. H. Quan (2017) Comparative analysis of the rats’ gut microbiota composition in animals with different ginsenosides metabolizing activity. J. Agric. Food Chem. 65: 327–337.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, H. Y., L. W. Qi, C. Z. Wang, and P. Li (2011) Bioactivity enhancement of herbal supplements by intestinal microbiota focusing on ginsenosides. Am. J. Chin. Med. 39: 1103–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong, W. W., X. Z. Han, J. Zhao, F. L. Zhong, R. Ma, S. Wu, D. Li, L. H. Quan, and J. Jiang (2018) Metabolite profiling of ginsenosides in rat plasma, urine and feces by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Panax ginseng extract. Biomed. Chromatogr. 32: e4105.

    Article  Google Scholar 

  5. Zhong, F. L., W. W. Dong, S. Wu, J. Jiang, D. C. Yang, D. Li, and L. H. Quan (2016) Biotransformation of gypenoside XVII to compound K by a recombinant beta-glucosidase. Biotechnol. Lett. 38: 1187–1193.

    Article  CAS  PubMed  Google Scholar 

  6. Choi, J. R., S. W. Hong, Y. Kim, S. E. Jang, N. J. Kim, M. J. Han, and D. H. Kim (2011) Metabolic activities of ginseng and its constituents, ginsenoside rb1 and rg1, by human intestinal microflora. J. Ginseng Res. 35: 301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J., E. Lee, D. Kim, J. Lee, J. Yoo, and B. Koh (2009) Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J. Ethnopharmacol. 122: 143–148.

    Article  CAS  PubMed  Google Scholar 

  8. Wan, J. Y., P. Liu, H. Y. Wang, L. W. Qi, C. Z. Wang, P. Li, and C. S. Yuan (2013) Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A. 1286: 83–92.

    Article  CAS  PubMed  Google Scholar 

  9. Bae, E. A., M. K. Choo, E. K. Park, S. Y. Park, H. Y. Shin, and D. H. Kim (2002) Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25: 743–747.

    Article  CAS  PubMed  Google Scholar 

  10. Bae, E. A., S. Y. Park, and D. H. Kim (2000) Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23: 1481–1485.

    Article  CAS  PubMed  Google Scholar 

  11. Bae, E. A., J. E. Shin, and D. H. Kim (2005) Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol. Pharm. Bull. 28: 1903–1908.

    Article  CAS  PubMed  Google Scholar 

  12. Cui, C. H., J. K. Kim, S. C. Kim, and W. T. Im (2014) Characterization of a ginsenoside-transforming beta-glucosidase from Paenibacillus mucilaginosus and its application for enhanced production of minor ginsenoside F2. PLoS One. 9: e85727.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siraj, F. M., N. SathishKumar, Y. J. Kim, S. Y. Kim, and D. C. Yang (2015) Ginsenoside F2 possesses anti-obesity activity via binding with PPARgamma and inhibiting adipocyte differentiation in the 3T3-L1 cell line. J. Enzyme Inhib. Med. Chem. 30: 9–14.

    Article  CAS  PubMed  Google Scholar 

  14. Shin, H. S., S. Y. Park, E. S. Hwang, D. G. Lee, H. G. Song, G. T. Mavlonov, and T. H. Yi (2014) The inductive effect of ginsenoside F2 on hair growth by altering the WNT signal pathway in telogen mouse skin. Eur. J. Pharmacol. 730: 82–89.

    Article  CAS  PubMed  Google Scholar 

  15. Park, S. H., W. Seo, H. S. Eun, S. Y. Kim, E. Jo, M. H. Kim, W. M. Choi, J. H. Lee, Y. R. Shim, C. H. Cui, S. C. Kim, C. Y. Hwang, and W. I. Jeong (2016) Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem. Biophys. Res. Commun. 478: 1713–1719.

    Article  CAS  PubMed  Google Scholar 

  16. Mai, T. T., J. Moon, Y. Song, P. Q. Viet, P. V. Phuc, J. M. Lee, T. H. Yi, M. Cho, and S. K. Cho (2012) Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 321: 144–153.

    Article  CAS  PubMed  Google Scholar 

  17. Li, L., S. Y. Shin, S. J. Lee, J. S. Moon, W. T. Im, and N. S. Han (2016) Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of β-glucosidase gene from Paenibacillus mucilaginosus. J. Agric. Food Chem. 64: 2506–2512.

    Article  CAS  PubMed  Google Scholar 

  18. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quan, L. H., C. Wang, Y. Jin, T. R. Wang, Y. J. Kim, and D. C. Yang (2013) Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3. Antonie Van Leeuwenhoek. 104: 129–137.

    Article  CAS  PubMed  Google Scholar 

  20. El Kaoutari, A., F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11: 497–504.

    Article  CAS  PubMed  Google Scholar 

  21. Qian, T., Z. H. Jiang, and Z. Cai (2006) High-performance liquid chromatography coupled with tandem mass spectrometry applied for metabolic study of ginsenoside Rb1 on rat. Anal. Biochem. 352: 87–96.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, K. A., I. H. Jung, S. H. Park, Y. T. Ahn, C. S. Huh, and D. H. Kim (2013) Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS One. 8: e62409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, L., F. Li, W. J. Qin, C. Fu, and X. L. Zhang (2018) Changes in intestinal microbiota affect metabolism of ginsenoside Re. Biomed. Chromatogr. 32: e4284.

    Article  PubMed  Google Scholar 

  24. Ishida, N., A. Okubo, H. Kawai, S. Yamazaki, and S. Toda (1980) Interaction of amino acids with transition metal ions in solution (I) solution structure of L-lysine with Co (II) and Cu (II) ions as studied by nuclear magnetic resonance spectroscopy. Agric. Biol. Chem. 44: 263–270.

    CAS  Google Scholar 

  25. Olajuyigbe, F. M., C. M. Nlekerem, and O. A. Ogunyewo (2016) Production and characterization of highly thermostable beta-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem. Res. Int. 2016: 3978124.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peshin, A. and J. M. S. Mathur (1999) Purification and characterization of beta-glucosidase from Aspergillus niger strain 322. Lett. Appl. Microbiol. 28: 401–404.

    Article  CAS  Google Scholar 

  27. Riordan, J. F. (1977) The role of metals in enzyme activity. Ann. Clin. Lab. Sci. 7: 119–129.

    CAS  PubMed  Google Scholar 

  28. Tejirian, A. and F. Xu (2010) Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl. Environ. Microbiol. 76: 7673–7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bronnenmeier, K. and W. L. Staudenbauer (1988) Purification and properties of an extracellular β-glucosidase from the cellulolytic thermophile Clostridium stercorarium. Appl. Microbiol. Biotechnol. 28: 380–386.

    Article  CAS  Google Scholar 

  30. Kim, Y. S., S. J. Yeom, and D. K. Oh (2011) Characterization of a GH3 family beta-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. J. Agric. Food Chem. 59: 11812–11818.

    Article  CAS  PubMed  Google Scholar 

  31. Quan, L. H., J. Y. Piao, J. W. Min, H. B. Kim, S. R. Kim, D. U. Yang, and D. C. Yang (2011) Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102. J. Ginseng Res. 35: 344–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan, S., P. C. Wei, Q. Chen, X. Chen, S. C. Wang, J. R. Li, and C. Gao (2018) Functional and structural characterization of a beta-glucosidase involved in saponin metabolism from intestinal bacteria. Biochem. Biophys. Res. Commun. 496: 1349–1356.

    Article  CAS  PubMed  Google Scholar 

  33. Jung, I. H., J. H. Lee, Y. J. Hyun, and D. H. Kim (2012) Metabolism of ginsenoside Rb1 by human intestinal microflora and cloning of its metabolizing beta-D-glucosidase from Bifidobacterium longum H-1. Biol. Pharm. Bull. 35: 573–581.

    Article  CAS  PubMed  Google Scholar 

  34. Hyun, Y. J., B. Kim, and D. H. Kim (2012) Cloning and characterization of ginsenoside Ra1-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110. J. Microbiol. Biotechnol. 22: 535–540.

    Article  CAS  PubMed  Google Scholar 

  35. Kim, H. K. (2013) Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J. Ginseng Res. 37: 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akao, T., M. Kanaoka, and K. Kobashi (1998) Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration-measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245–249.

    Article  CAS  PubMed  Google Scholar 

  37. Akao, T., H. Kida, M. Kanaoka, M. Hattori, and K. Kobashi (1998) Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50: 1155–1160.

    Article  CAS  PubMed  Google Scholar 

  38. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065–1071.

    Article  PubMed  Google Scholar 

  39. Qian, T., Z. Cai, R. N. S. Wong, N. K. Mak, and Z. H. Jiang (2005) In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 816: 223–232.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, L., Y. Deng, S. Xu, and X. Zeng (2007) In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 854: 77–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (No. 81660643), the 13th Five-Year Plan Science and Technology Research Project of Education Department of Jilin Province of China (JJKH20210586KJ), Innovative and Entrepreneurial Talent in Jilin Province of China (2020022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Wei Dong or Lin-Hu Quan.

Additional information

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Neither ethical approval nor informed consent was required for this study.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Hao, C., Jin, W. et al. Biotransformation of Ginsenoside Rb1 to Ginsenoside F2 by Recombinant β-glucosidase from Rat Intestinal Enterococcus gallinarum. Biotechnol Bioproc E 26, 968–975 (2021). https://doi.org/10.1007/s12257-021-0008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0008-2

Keywords

Navigation