Skip to main content
Log in

Zerumbone Treatment Upregulates Hyaluronic Acid Synthesis via the MAPK, CREB, STAT3, and NF-κB Signaling Pathways in HaCaT Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Hyaluronic acid (HA), a hydrophilic molecule and a natural skin moisturizer, is produced by the enzyme HA synthase (HAS). Appropriate HA levels are important to maintain the skin moisture content. HA also improves skin conditions by partially recovering the function of the damaged skin barrier. In this study, we investigated the expression and mechanism of action of moisturizing factors related to HA production by analyzing the moisturizing effect of zerumbone (ZER) treatment in human keratinocytes (HaCaT cells). Changes in the expression levels of aquaporin-3 (AQP3), HAS, and hyaluronidase (HYAL) mRNAs upon ZER treatment in HaCaT cells were examined using real-time PCR. In addition, changes in the HAS-related signaling pathways were analyzed using western blotting. ZER treatment increased HAS and AQP3 mRNA as well as HA levels in a dose-dependent manner while reducing UVB-induced HYAL levels. Further, HAS expression-related MAPK, STAT3, and CREB were phosphorylated as ZER concentration increased. We conclude that ZER treatment may help improve skin moisturization and aid in the recovery of the skin barrier by increasing HA levels in human keratinocyte cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, E., Y. G. Kang, S. H. Hwang, J. K. Kim, Y. D. Hong, W. S. Park, D. Kim, E. Kim, and J. Y. Cho (2019) In vitro effects of dehydrotrametenolic acid on skin barrier function. Molecules. 24: 4583.

    Article  CAS  Google Scholar 

  2. Hon, K. L., A. K. C. Leoug, and B. Barankin (2013) Barrier repair therapy in atopic dermatitis: An overview. Am. J. Clin. Dermatol. 14: 389–399.

    Article  Google Scholar 

  3. Verdier-Sévrain, S. and F. Bonté (2007) Skin hydration: a review on its molecular mechanisms. J. Cosmet. Dermatol. 6: 75–82.

    Article  Google Scholar 

  4. Bukhari, S. N. A., N. L. Roswandi, M. Waqas, H. Habib, F. Hussain, S. Khan, M. Sohail, N. A. Ramli, H. E. Thu, and Z. Hussain (2018) Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 120: 1682–1695.

    Article  CAS  Google Scholar 

  5. Tokudome, Y., T. Komi, A. Omata, and M. Sekita (2018) A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method. Sci. Rep. 8: 2336.

    Article  Google Scholar 

  6. Matsumoto, K., Y. Li, C. Jakuba, Y. Sugiyama, T. Sayo, M. Okuno, C. N. Dealy, B. P. Toole, J. Takeda, Y. Yamaguchi, and R. A. Kosher (2009) Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development. 136: 2825–2835.

    Article  CAS  Google Scholar 

  7. Papakonstantinou, E., M. Roth, and G. Karakiulakis (2012) Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 4: 253–258.

    Article  CAS  Google Scholar 

  8. Lee, J. E., Y. A. Kim, S. Yu, S. Y. Park, K. H. Kim, and N. J. Kang (2019) 3,6-Anhydro-L-galactose increases hyaluronic acid production via the EGFR and AMPKα signaling pathway in HaCaT keratinocytes. J. Dermatol. Sci. 96: 90–98.

    Article  CAS  Google Scholar 

  9. Rauhala, L., L. Hamalainen, P. Salonen, G. Bart, M. Tammi, S. Pasonen-Seppanen, and R. Tammi (2013) Low dose ultraviolet B irradiation increases hyaluronan synthesis in epidermal keratinocytes via sequential induction of hyaluronan synthases Has1-3 mediated by p38 and ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling. J. Biol. Chem. 288: 17999–18012.

    Article  CAS  Google Scholar 

  10. Stern, R. and H. I. Maibach (2008) Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin. Dermatol. 26: 106–122.

    Article  Google Scholar 

  11. Hara-Chikuma, M. and A. S. Verkman (2008) Roles of aquaporin-3 in the epidermis. J. Invest. Dermatol. 128: 2145–2151.

    Article  CAS  Google Scholar 

  12. Kalantari, K., M. Moniri, A. B. Moghaddam, R. A. Rahim, A. B. Ariff, Z. Izadiyan, and R. Mohamad (2017) A review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes. Molecules. 22: 1645.

    Article  Google Scholar 

  13. Yang, H. L., C. L. Lee, M. Korivi, J. W. Liao, P. Rajendran, J. J. Wu, and Y. C. Hseu (2018) Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction. Biochem. Pharmacol. 148: 130–146.

    Article  CAS  Google Scholar 

  14. Oh, T. I., H. J. Jung, Y. M. Lee, S. Lee, G. H. Kim, S. Y. Kan, H. Kang, T. Oh, H. M. Ko, K. C. Kwak, and J. H. Lim (2018) Zerumbone, a tropical ginger sesquiterpene of Zingiber officinale roscoe, attenuates α-MSH-induced melanogenesis in B16F10 cells. Int. J. Mol. Sci. 19: 3149.

    Article  Google Scholar 

  15. Wiest, L. and M. Kerscher (2008) Native hyaluronic acid in dermatology — results of an expert meeting. J. Dtsch. Dermatol. Ges. 6: 176–180.

    Article  Google Scholar 

  16. Huerta-Ángeles, G., M. Brandejsová, P. Štĕpán, V. Pavlík, J. Starigazdová, P. Orzol, K. Kopecká, P. Halamková, J. Kulhánek, and V. Velebný (2020) Retinoic acid grafted to hyaluronan for skin delivery: Synthesis, stability studies, and biological evaluation. Carbohydr. Polym. 231: 115733.

    Article  Google Scholar 

  17. Rawlings, A. V. and C. R. Harding (2004) Moisturization and skin barrier function. Dermatol. Ther. 17 Suppl 1: 43–48.

    Article  Google Scholar 

  18. Baumann, L. (2007) Skin ageing and its treatment. J. Pathol. 211: 241–251.

    Article  CAS  Google Scholar 

  19. Heimall, J. and J. M. Spergel (2012) Filaggrin mutations and atopy: consequences for future therapeutics. Expert Rev. Clin. Immunol. 8: 189–197.

    Article  CAS  Google Scholar 

  20. Kogan, G., L. Soltes, R. Stern, and P. Gemeiner (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17–25.

    Article  CAS  Google Scholar 

  21. Haylock, D. N. and S. K. Nilsson (2006) The role of hyaluronic acid in hemopoietic stem cell biology. Regen. Med. 1: 437–445.

    Article  CAS  Google Scholar 

  22. Li, L., T. Asteriou, B. Bernert, C. H. Heldin, and P. Heldin (2007) Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem. J. 404: 327–336.

    Article  CAS  Google Scholar 

  23. Chen, W. Y. and G. Abatangelo (1999) Functions of hyaluronan in wound repair. Wound Repair Regen. 7: 79–89.

    Article  CAS  Google Scholar 

  24. Csoka, A. B., G. I. Frost, and R. Stern (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20: 499–508.

    Article  CAS  Google Scholar 

  25. Jeong, D., J. Lee, S. G. Jeong, Y. H. Hong, S. Yoo, S. Y. Han, J. H. Kim, S. Kim, J. S. Kim, Y. S. Chung, J. H. Kim, Y. S. Yi, and J. Y. Cho (2018) Artemisia asiatica ethanol extract exhibits anti-photoaging activity. J. Ethnopharmacol. 220: 57–66.

    Article  CAS  Google Scholar 

  26. Hasham, R., H. K. Choi, M. R. Sarmidi, and C. S. Park (2013) Protective effects of a Ficus deltoidea (Mas cotek) extract against UVB-induced photoageing in skin cells. Biotechnol. Bioprocess Eng. 18: 185–193.

    Article  CAS  Google Scholar 

  27. Turley, E. A., P. W. Noble, and L. Y. W. Bourguignon (2002) Signaling properties of hyaluronan receptors. J. Biol. Chem. 277: 4589–4592.

    Article  CAS  Google Scholar 

  28. Nakakoshi, M., Y. Morishita, K. Usui, M. Ohtsuki, and K. Ishibashi (2006) Identification of a keratinocarcinoma cell line expressing AQP3. Biol. Cell. 98: 95–100.

    Article  CAS  Google Scholar 

  29. Cho, U. M., J. H. Choi, and H. S. Hwang (2017) Deoxynivalenol impair skin barrier function through the down regulation of filaggrin and claudin 1/8 in HaCaT Keratinocyte. Biotechnol. Bioprocess Eng. 22: 693–699.

    Article  CAS  Google Scholar 

  30. Olsson, M., A. Broberg, M. Jernås, L. Carlsson, M. Rudemo, M. Suurküla, P. A. Svensson, and M. Benson (2006) Increased expression of aquaporin 3 in atopic eczema. Allergy. 61: 1132–1137.

    Article  CAS  Google Scholar 

  31. Bellemère, G., O. Von Stetten, and T. Oddos (2008) Retinoic acid increases aquaporin 3 expression in normal human skin. J. Invest. Dermatol. 128: 542–548.

    Article  Google Scholar 

  32. Lim, T. G., A. J. Jeon, J. H. Yoon, D. Song, J. E. Kim, J. Y. Kwon, J. R. Kim, N. J. Kang, J. S. Park, M. H. Yeom, D. K. Oh, Y. Lim, C. C. Lee, C. Y. Lee, and K. W. Lee (2015) 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. Int. J. Mol. Med. 35: 1388–1394.

    Article  CAS  Google Scholar 

  33. Pasonen-Seppänen, S., S. Karvinen, K. Törrönen, J. M. T. Hyttinen, T. Jokela, M. J. Lammi, M. I. Tammi, and R. Tammi (2003) EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J. Invest. Dermatol. 120: 1038–1044.

    Article  Google Scholar 

  34. Saavalainen, K., S. Pasonen-Seppänen, T. W. Dunlop, R. Tammi, M. I. Tammi, and C. Carlberg (2005) The human hyaluronan synthase 2 gene is a primary retinoic acid and epidermal growth factor responding gene. J. Biol. Chem. 280: 14636–14644.

    Article  CAS  Google Scholar 

  35. Wang, S., L. Zhen, Z. Liu, Q. Ai, Y. Ji, G. Du, Y. Wang, and Y. Bu (2015) Identification and analysis of the promoter region of the human HAS3 gene. Biochem. Biophys. Res. Commun. 460: 1008–1014.

    Article  CAS  Google Scholar 

  36. Mizuno, H., Y. Y. Cho, W. Y. Ma, A. M. Bode, and Z. Dong (2006) Effects of MAP kinase inhibitors on epidermal growth factor-induced neoplastic transformation of human keratinocytes. Mol. Carcinog. 45: 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This paper was supported by the Semyung University Research Grant of 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Min Kim.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Kwon, M.S., Oh, S.R. et al. Zerumbone Treatment Upregulates Hyaluronic Acid Synthesis via the MAPK, CREB, STAT3, and NF-κB Signaling Pathways in HaCaT Cells. Biotechnol Bioproc E 27, 51–60 (2022). https://doi.org/10.1007/s12257-020-0341-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0341-x

Keywords

Navigation