Skip to main content
Log in

Evaluating the Cryoprotective Encapsulation of the Lactic Acid Bacteria in Simulated Gastrointestinal Conditions

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To expect the positive physiological functions from probiotic consumption, the lactic acid bacteria should survive, partially, in the gastrointestinal (GI) tract. This study aimed to evaluate the viable stability of probiotic bacterial cells (Lactobacillus plantarum MG989, L. fermentum MG901, Streptococcus thermophilus MG5140, Lactococcus lactis MG5125, and Enterococcus faecium MG89-2) that were coated with sodium alginate and pumpkin powder (SP) by comparing their resistance in simulated intestinal fluid (with pancreatin) and simulated gastric fluid (with pepsin) in vitro with that of the non-coated free cells. The viable stability was determined by counting cells with colony forming unit (CFU) from agar plate culture of SP coated and non-coated free cells in simulated GI conditions. Survival rate enhanced up to 28.7% and 14.0% in the condition of simulated gastric fluid and simulated intestinal fluid, respectively. The results showed that the SP coated cells exhibited considerably greater resistance to the simulated gastric fluid than the activated cells (p < 0.001), showing that the SP coating may enhance the survival of probiotic bacteria after consumption during their transit through the GI tract after freeze-drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations and World Health Organization (2002) Guidelines for the evaluation of probiotics in foods: Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

    Google Scholar 

  2. Holmes, E., J. V. Li, J. R. Marchesi, and J. K. Nicholson (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16: 559–564.

    Article  CAS  Google Scholar 

  3. Opazo, M. C., E. M. Ortega-Rocha, I. Coronado-Arrázola, L. C. Bonifaz, H. Boudin, M. Neunlist, S. M. Bueno, A. M. Kalergis, and C. A. Riedel (2018) Intestinal microbiota influences nonintestinal related autoimmune diseases. Front. Microbiol. 9: 432.

    Article  PubMed  Google Scholar 

  4. Vamanu, E., D. Pelinescu, and I. Sarbu (2016) Comparative fingerprinting of the human microbiota in diabetes and cardiovascular disease. J. Med. Food. 19: 1188–1195.

    Article  CAS  Google Scholar 

  5. Fei, N. and L. Zhao (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7: 880–884.

    Article  CAS  Google Scholar 

  6. Fischbach, M. A. (2018) Microbiome: focus on causation and mechanism. Cell. 174: 785–790.

    Article  CAS  PubMed  Google Scholar 

  7. Holmes, M. V., P. Newcombe, J. A. Hubacek, R. Sofat, S. L. Ricketts, J. Cooper, M. M. B. Breteler, L. E. Bautista, P. Sharma, J. C. Whittaker, L. Smeeth, F. G. R. Fowkes, A. Algra, V. Shmeleva, Z. Szolnoki, M. Roest, M. Linnebank, J. Zacho, M. A. Nalls, A. B. Singleton, L. Ferrucci, J. Hardy, B. B. Worrall, S. S. Rich, M. Matarin, P. E. Norman, L. Flicker, O. P. Almeida, F. M. van Bockxmeer, H. Shimokata, K. T. Khaw, N. J. Wareham, M. Bobak, J. A. C. Sterne, G. D. Smith, P. J. Talmud, C. van Duijn, S. E. Humphries, J. F. Price, S. Ebrahim, D. A. Lawlor, G. J. Hankey, J. F. Meschia, M. S. Sandhu, A. D. Hingorani, and J. P. Casas (2011) Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 378: 584–594.

    Article  CAS  PubMed  Google Scholar 

  8. Isolauri, E., S. Salminen, and A. C. Ouwehand (2004) Probiotics. Best Pract Res Clin Gastroenterol. 18: 299–313.

    Article  Google Scholar 

  9. Seo, J. G., G. S. Lee, J. E. Kim, and M. J. Chung (2010) Development of probiotic products and challengers. KSBB J. 25: 303–310.

    Google Scholar 

  10. Round, J. L. and N. W. Palm (2018) Causal effects of the microbiota on immune-mediated diseases. Sci Immunol. 3: eaao1603.

    Article  Google Scholar 

  11. Surana, N. K. and D. L. Kasper (2017) Moving beyond microbiome-wide associations to causal microbe identification. Nature. 552: 244–247.

    Article  CAS  PubMed  Google Scholar 

  12. Tremlett, H., K. C. Bauer, S. Appel-Cresswell, B. B. Finlay, and E. Waubant (2017) The gut microbiome in human neurological disease: a review. Ann. Neurol. 81: 369–382.

    Article  Google Scholar 

  13. de Vrese, M., A. Stegelmann, B. Ritcher, S. Fenselau, C. Laue, and J. Schrezenmeir (2001) Probiotics-compensation for lactase insufficiency. Am. J. Clin. Nutr. 73: 421s-429s.

  14. Kaur, I. P., K. Chopra, and A. Saini (2002) Probiotics: potential pharmaceutical applications. Eur. J. Pharm. Sci. 15: 1–9.

    Article  CAS  Google Scholar 

  15. Knorr, D. (1998) Technology aspects related to microorganisms in functional foods. Trends Food Sci. Technol. 9: 295–306.

    Article  CAS  Google Scholar 

  16. Maleki, D., A. Azizi, E. Vaghef, S. Balkani, and A. Homayouni (2015) Methods of increasing probiotic survival in food and gastrointestinal conditions. Prensa Med. Argent. 101: 4.

  17. Sohail, A., M. S. Turner, A. Coombes, and B. Bhandari (2013) The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food Bioprocess. Technol. 6: 2763–2769.

    Article  Google Scholar 

  18. Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378.

    Article  CAS  Google Scholar 

  19. Wang, L., X. Yu, H. Xu, Z. P. Aguilar, and H. Wei (2016) Effect of skim milk coated inulin-alginate encapsulation beads on viability and gene expression of Lactobacillus plantarum during freeze-drying. Lebensm. Wiss. Technol. 68: 8–13.

    Article  CAS  Google Scholar 

  20. Berny, J. F. and G. L. Hennebert (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates. Mycologia. 83: 805–815.

    Article  CAS  Google Scholar 

  21. Morgan, C. and G. Vesey (2009) Freeze-drying of microorganisms. pp. 162–173. In: M. Schaechter (ed.). Encyclopedia of Microbiology. Academic Press, Oxford, UK.

    Chapter  Google Scholar 

  22. Quintana, G., E. Gerbino, and A. Gómez-Zavaglia (2017) Okara: A nutritionally valuable by-product able to stabilize lactobacillus plantarum during freeze-drying, spray-drying, and storage. Front. Microbiol. 8: 641.

  23. Hubalek, Z. (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology. 46: 205–229.

    Article  CAS  Google Scholar 

  24. Tedeschi, R. and P. De Paoli (2011) Collection and preservation of frozen microorganisms. pp. 313–326. In: J. Dillner (ed.). Methods in Biobanking. Humana Press: Totowa, NJ, USA.

    Chapter  Google Scholar 

  25. Zachariassen, K. E. and E. Kristiansen (2000) Ice nucleation and antinucleation in nature. Cryobiology. 41: 257–279.

    Article  CAS  Google Scholar 

  26. Bailey, T. L., C. Stubbs, K. Murray, R. M. F. Tomás, L. Otten, and M. I. Gibson (2019) Synthetically scalable poly(ampholyte) which dramatically enhances cellular cryopreservation. Biomacromolecules. 20: 3104–3114.

    Article  CAS  PubMed  Google Scholar 

  27. Choi, J. B., Y. W. Shin, N. S. Paek, and Y. M. Kim (2004) Enfluence of herbal extract on lactic acid bacteria growth and cryoprotectants. Korean J. Food. Nutr. 17: 286–293.

    Google Scholar 

  28. Kang, C. H., Y. G. Kim, S. H. Han, J. S. Kim, Y. Jeong, and N. S. Paek (2017) Effect of pumpkin powder as cryoprotectant to improve the viability of freeze dried lactic acid bacteria. KSBB J. 32: 251–255.

    Article  Google Scholar 

  29. Lim, Y. B., N. S. Paek, and Y. M. Kim (2001) Screening of lactic acid bacteria for the development of probiotics and the effect of cryoprotectant agents. Korean J. Food. Nutr. 14: 441–445.

    Google Scholar 

  30. Dolly, P., A. Anishaparvin, G. S. Joseph, and C. Anandharamakrishnan (2011) Microencapsulation of Lactobacillus plantarum (MTCC 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. J. Microencapsul. 28: 568–574.

    Article  CAS  Google Scholar 

  31. Ross, R. P., C. Desmond, G. F. Fitzgerald, and C. Stanton (2005) Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98: 1410–1417.

    Article  CAS  Google Scholar 

  32. Adhikari, K., A. Mustapha, I. U. Grün, and L. Fernando (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83: 1946–1951.

    Article  CAS  Google Scholar 

  33. Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, and K. Kailasapathy (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62: 47–55.

    Article  CAS  Google Scholar 

  34. Krasaekoopt, W., B. Bhandari, and H. Deeth (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3–13.

    Article  CAS  Google Scholar 

  35. Doleyres, Y., I. Fliss, and C. Lacroix (2004) Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. J. Appl. Microbiol. 97: 527–539.

    Article  CAS  Google Scholar 

  36. Iyer, C. and K. Kailasapathy (2005) Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J. Food Sci. 70: M18-M23.

  37. Picot, A. and C. Lacroix (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14: 505–515.

    Article  CAS  Google Scholar 

  38. Wee, S. and W. R. Gombotz (1998) Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267–285.

    Article  CAS  Google Scholar 

  39. Sun, W. and M. W. Griffiths (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17–25.

    Article  CAS  Google Scholar 

  40. Trindade, C. S. F. and C. R. F. Grosso (2000) The effect of the immobilisation of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft. 55: 496–499.

    CAS  Google Scholar 

  41. Halim, M., N. A. M. Mustafa, M. Othman, H. Wasoh, M. R. Kapri, and A. B. Ariff (2017) Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. Lebensm. Wiss. Technol. 81: 210–216.

    Article  CAS  Google Scholar 

  42. Zuidam, N. J. and E. Shimoni (2010) Overview of microencapsulates for use in food products or processes and methods to make them. pp. 3–29. In: N. J. Zuidam and V. Nedovic (eds.). Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY, USA.

    Chapter  Google Scholar 

  43. Rajam, R., S. B. Kumar, P. Prabhasankar, and C. Anandharamakrishnan (2015) Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J. Food Sci. Technol. 52: 4029–4041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ho Kang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Declaration The authors declare no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Kim, Y., Kim, JS. et al. Evaluating the Cryoprotective Encapsulation of the Lactic Acid Bacteria in Simulated Gastrointestinal Conditions. Biotechnol Bioproc E 25, 287–292 (2020). https://doi.org/10.1007/s12257-019-0406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0406-x

Keywords

Navigation