Skip to main content
Log in

Endoglucanase Produced by Bacillus subtilis Strain CBS31: Biochemical Characterization, Thermodynamic Study, Enzymatic Hydrolysis, and Bio-industrial Applications

  • Research Paper
  • Enzyme Technology and Protein Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microbial cellulases have become the mainstream biocatalysts due to their complex nature and widespread industrial applications. Here, homogeneous endoglucanase GluCB31 from Bacillus subtilis subsp. inaquosorum CBS31 was studied. GluCB31 was purified to 17.68-fold with an 8.33% yield and a specific activity of 1066.37 U/mg. Biochemical properties of GluCB31 were performed and the results are as follows; molecular mass of 35 kDa with an optimum pH at 7.5 and temperature at 50°C. GluCB31 was immobilized in calcium alginate gel and it exhibited the highest activity at 10°C higher temperature than soluble enzyme, as the entrapment in alginate gel made GluCB31 more stable. Kinetic studies showed the Vmax of 1293.33 ± 2.51 U/mg and Km of 0.0183 mg/mL. Enzymatic activity was activated by Tween-20 (106.7%), Tween-80 (111.6%), Triton X-100 (142.3%), SDS (135.5%), Mg++ (185.7%), Cu++ (167.6%), Zn++ (153.7%), Mn++ (106.3%), Ba++ (181.9%), Ni++ (107.2%) while inhibited by Fe++ (15.8%), β-mercaptoethanol (46.8%), EDTA (54.5%). Enthalpy, free energy, and entropy of activation were calculated to be 38.526 kJmol-1, 44.187 kJmol-1, and -17.518 Jmol-1K-1 respectively. Also, ΔGE-S and ΔGE-T were found to be -10.75 kJmol-1 and -45.92 kJmol-1 respectively. A low ΔS, ΔGE-S, and ΔGE-T values were signified enzyme-catalyzed reaction occurs at a fast rate and the existence of the enzyme in its stable state. Cellobiose was the major end product of hydrolysis. These attributes of GluCB31 demonstrated the diversity of catalytic activities and serve in various biotechnological processes, thus deserve to be developed as a bio-industrial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishida, Y., K. Suzuki, Y. Kumagai, H. Tanaka, A. Inoue, and T. Ojima (2007) Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochem. 89: 1002–1011.

    Article  CAS  Google Scholar 

  2. Bhat, M. K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583–620.

    Article  CAS  PubMed  Google Scholar 

  3. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pérez, J., J. Munoz-Dorado, T. de la Rubia, and J. Martinez (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53–63.

    Article  PubMed  CAS  Google Scholar 

  5. Robson, L. M. and G. H. Chambliss (1989) Cellulases of bacterial origin. Enzyme Microb. Technol. 11: 626–644.

    Article  CAS  Google Scholar 

  6. Kotchoni, S. O., E. W. Gachomo, B. O. Omafuvbe, and O. O. Shonukan (2006) Purification and biochemical characterization of carboxymethyl cellulase (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus. Int. J. Agric. Biol. 8: 286–292.

    CAS  Google Scholar 

  7. Singh, V. K. and A. Kumar (1998) Production and purification of an extracellular cellulase from Bacillus brevis vs-1. IUBMB Life. 45: 443–452.

    Article  CAS  Google Scholar 

  8. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378–386.

    Article  CAS  PubMed  Google Scholar 

  9. Yin, L. J., H. H. Lin, and Z. R. Xiao (2010) Purification and characterization of a cellulase from Bacillus subtilis YJ1. J. Mar. Sci. Technol. 18: 466–471.

    Article  Google Scholar 

  10. Yan, H., Y. Dai, Y. Zhang, L. Yan, and D. Liu (2011) Purification and characterization of an endo-1, 4-β-glucanase from Bacillus cereus. Afr J. Biotechnol. 10: 16277–16285.

    CAS  Google Scholar 

  11. Aygan, A., L. Karcioglu, and B. Arikan (2011) Alkaline thermostable and halophilic endoglucanase from Bacillus licheniformis C108. Afr. J. Biotechnol. 10: 789–796.

    CAS  Google Scholar 

  12. Regmi, S., Y. H. Choi, Y. S. Choi, M. R. Kim, and J. C. Yoo (2017) Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy. Folia Microbiol. 62: 127–138.

    Article  CAS  Google Scholar 

  13. Regmi, S., Y. S. Choi, Y. H. Choi, Y. K. Kim, S. S. Cho, J. C. Yoo, and J. W. Suh (2017) Antimicrobial peptide from Bacillus subtilis CSB138: characterization, killing kinetics, and synergistic potency. Int. Microbiol. 20: 43–53.

    CAS  PubMed  Google Scholar 

  14. Regmi, S., G. C. Pradeep, Y. H. Choi, Y. S. Choi, J. E. Choi, S. S. Cho, and J. C. Yoo (2016) A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst. Enzyme Microb. Technol. 92: 76–85.

    Article  CAS  PubMed  Google Scholar 

  15. Regmi, S., H. Y. Yoo, Y. H. Choi, Y. S. Choi, J. C. Yoo, and S. W. Kim (2017) Prospects for bio-industrial application of an extremely alkaline mannanase from Bacillus subtilis subsp. inaquosorum CSB31. Biotechnol. J. 12: 1700113

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  18. Eyring, H. and A. E. Stearn (1939) The application of the theory of absolute reaction rates to proteins. Chem. Rev. 24: 253–270.

    Article  CAS  Google Scholar 

  19. Dixon, M. and E. C. Webb (1979) Enzymes. 3rd ed., pp. 138–163. Academic Press, New York, USA.

    Google Scholar 

  20. Heinzelman, P., R. Komor, A. Kanaan, P. Romero, X. Yu, S. Mohler, C. Snow, and F. Arnold (2010) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng. Des. Sel. 23: 871–880.

    Article  CAS  PubMed  Google Scholar 

  21. Gübitz, G. M., S. D. Mansfield, D. Böhm, and J. N. Saddler (1998) Effect of endoglucanases and hemicellulases in magnetic and flotation deinking of xerographic and laser-printed papers. J. Biotechnol. 65: 209–215.

    Article  Google Scholar 

  22. Oksanen, T., J. Pere, L. Paavilainen, J. Buchert, and L. Viikari (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J. Biotechnol. 78: 39–48.

    Article  CAS  PubMed  Google Scholar 

  23. Ding, S., W. Ge, and J. A. Buswell (2002) Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme Microb. Technol. 31: 621–626.

    Article  CAS  Google Scholar 

  24. Sudan, R. and B. K. Bajaj (2007) Production and biochemical characterization of xylanase from an alkalitolerant novel species Aspergillus niveus RS2. World J. Microbiol. Biotechnol. 23: 491–500.

    Article  CAS  Google Scholar 

  25. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson (2000) Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177–187.

    Article  CAS  PubMed  Google Scholar 

  26. Bischoff, K. M., A. P. Rooney, X. L. Li, S. Liu, and S. R. Hughes (2006) Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol. Lett. 28: 1761–1765.

    Article  CAS  PubMed  Google Scholar 

  27. Lucas, R., A. Robles, M. T. García, G. Alvarez De Cienfuegos, and A. Gálvez (2001) Production, purification, and properties of an endoglucanase produced by the hyphomycete Chalara (Syn. Thielaviopsis) paradoxa CH32. J. Agric. Food Chem. 49: 79–85.

    Article  CAS  PubMed  Google Scholar 

  28. Andriani, D., C. Sunwoo, H. W. Ryu, B. Prasetya, and D. H. Park (2012) Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material. Bioprocess Biosyst. Eng. 35: 29–33.

    Article  CAS  PubMed  Google Scholar 

  29. Busto, M. D., N. Ortega, and M. Perez-Mateos (1998) Characterization of microbial endo-β-glucanase immobilized in alginate beads. Acta Biotechnol. 18: 189–200.

    Article  CAS  Google Scholar 

  30. Wang, F., R. X. Su, W. Qi, M. J. Zhang, and Z. M. He (2010) Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite. Prep. Biochem. Biotechnol. 40: 57–64.

    Article  PubMed  CAS  Google Scholar 

  31. Singh, J., N. Batra, and R. C. Sobti (2004) Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J. Ind. Microbiol. Biotechnol. 31: 51–56.

    Article  CAS  PubMed  Google Scholar 

  32. de Marco, J. L. and C. R. Felix (2007) Purification and characterization of a beta-Glucanase produced by Trichoderma harzianum showing biocontrol potential. Braz. Arch. Biol. Technol. 50: 21–29.

    Article  Google Scholar 

  33. Kim, J. Y., S. H. Hur, and J. H. Hong (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27: 313–316.

    Article  CAS  PubMed  Google Scholar 

  34. Madern, D., C. Ebel, and G. Zaccai (2000) Halophilic adaptation of enzymes. Extremophiles. 4: 91–98.

    Article  CAS  PubMed  Google Scholar 

  35. Wejse, P. L., K. Ingvorsen, and K. K. Mortensen (2003) Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microb. Technol. 32: 721–727.

    Article  CAS  Google Scholar 

  36. Tong, C. C., A. L. Cole, and M. G. Shepherd (1980) Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus. Biochem. J. 191: 83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daniel, R. M. (1996) The upper limits of enzyme thermal stability. Enzyme Microb. Technol. 19: 74–79.

    Article  CAS  Google Scholar 

  38. Nosoh, Y. and T. Sekiguchi (1990) Protein engineering for thermostability. Trends Biotechnol. 8: 16–20.

    Article  CAS  PubMed  Google Scholar 

  39. Zale, S. E. and A. M. Klibanov (1986) Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry. 25: 5432–5444.

    Article  CAS  PubMed  Google Scholar 

  40. Vieille, C. and J. G. Zeikus (1996) Thermozymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14: 183–190.

    Article  CAS  Google Scholar 

  41. D’Amico, S., J. C. Marx, C. Gerday, and G. Feller (2003) Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891–7896.

    Article  PubMed  CAS  Google Scholar 

  42. Amiri, H., K. Karimi, and H. Zilouei (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour. Technol. 152: 450–456.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01319101 and PJ01331001)” Rural Development Administration, Republic of Korea and National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2018R1D1A1B05050137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Cheol Yoo or Joo-Won Suh.

Ethics declarations

Conflict of Interest The authors declare that further, they have no conflict of interest.

Ethical Statement This article does not comprise any studies through human participants or animals performed by any of the authors.

Informed Consent Here, Informed consent was attained from all individual participants included in the study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regmi, S., Choi, Y.S., Kim, Y.K. et al. Endoglucanase Produced by Bacillus subtilis Strain CBS31: Biochemical Characterization, Thermodynamic Study, Enzymatic Hydrolysis, and Bio-industrial Applications. Biotechnol Bioproc E 25, 104–116 (2020). https://doi.org/10.1007/s12257-019-0338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0338-5

Keywords

Navigation