Skip to main content
Log in

Enhancement of Hydrolysis and Biogas Production of Primary Sludge by Use of Mixtures of Protease and Lipase

  • Research Paper
  • Environmental Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study aims to improve the hydrolysis and degradation of primary sludge by using wild-type enzymes (protease and lipase) and establishing the optimal enzymatic cocktail ratio. Primary sludge from three wastewater treatment plants (WWTPs) in Korea (Ulsan, Pohang, and Busan) were subjected to enzymatic hydrolysis. Protease and lipase were isolated from enzyme-producing microorganisms cultured from secondary sludge collected at 8 different digester sites in Korea. Primary sludge degradation through enzymatic hydrolysis was monitored by measuring the reduction in the volatile suspended solids (VSS) content of the sludge and enzyme cocktail mix for 72 h at 40oC and pH 7.0. The enzymatic cocktail of Ulsan primary sludge treated with protease to lipase at a ratio of 1:3 was found to be optimal at 33.3% VSS reduction. Biochemical methane potential (BMP) tests were employed to the optimal enzyme cocktail to measure the potential of the hydrolyzed substrate for further degradation (VSS reduction) and bioconversion to biogas using 125 mL serum bottles as anaerobic reactors for 30 days. BMP tests showed that there was an increase in biogas production by 84.1%, methane production by 89.8%, and methane yield by 9.6%. Methane production rate was also increased. The significant VSS concentration reduction and higher biogas and methane yield of the enzyme-treated primary sludge correlate to the fact that the complex polymeric organic materials were degraded leading to efficient utilization by the microorganisms in the anaerobic digestion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anjum, M., N. H. Al-Makishah, and M. A. Barakat (2016) Wastewater sludge stabilization using pre-treatment methods. Process Saf Environ Prot. 102: 615–632.

    CAS  Google Scholar 

  2. Hreiz, R., M. A. Latifi, and N. Roche (2015) Optimal design and operation of activated sludge processes: State-of-the-art. Chem. Eng. J. 281: 900–920.

    CAS  Google Scholar 

  3. He, J. G., X. D. Xin, W. Qiu, J. Zhang, Z. D. Wen, and J. Tang (2014) Performance of the lysozyme for promoting the waste activated sludge biodegradability. Bioresour. Technol. 170: 108–114.

    CAS  PubMed  Google Scholar 

  4. Moak, M. and I. J. Molineux (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol. Microbiol. 51: 1169–1183.

    CAS  PubMed  Google Scholar 

  5. Teo, C. W. and P. C. Wong (2014) Enzyme augmentation of an anaerobic membrane bioreactor treating sewage containing organic particulates. Water Res. 48: 335–344.

    CAS  PubMed  Google Scholar 

  6. Yang, Q., K. Luo, X. M. Li, D. B. Wang, W. Zheng, G. M. Zeng, and J. J. Liu (2010) Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour. Technol. 101: 2924–2930.

    CAS  PubMed  Google Scholar 

  7. Parawira, W. (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit. Rev. Biotechnol. 32: 172–186.

    CAS  PubMed  Google Scholar 

  8. Li, X., H. Ma, Q. Wang, S. Matsumoto, T. Maeda, and H. I. Ogawa (2009) Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge. Bioresour. Technol. 100: 2475–2481.

    CAS  PubMed  Google Scholar 

  9. Tang, Y., Y. L. Yang, X. M. Li, Q. Yang, D. B. Wang, and G. M. Zeng (2012) The isolation, identification of sludge-lysing thermophilic bacteria and its utilization in solubilization for excess sludge. Environ. Technol. 33: 961–966.

    CAS  PubMed  Google Scholar 

  10. Parmar, N., A. Singh, and O. P. Ward (2001) Enzyme treatment to reduce solids and improve settling of sewage sludge. J. Ind. Microbiol. Biotechnol. 26: 383–386.

    CAS  PubMed  Google Scholar 

  11. Appels, L., J. Baeyens, J. Degrève, and R. Dewil (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy. Combust. Sci. 34: 755–781.

    CAS  Google Scholar 

  12. Mehari, B. B., S. Chang, Y. Hong, and H. Chen (2018) Temperature-phased biological hydrolysis and thermal hydrolysis pretreatment for anaerobic digestion performance enhancement. Water. 10: 1812.

    CAS  Google Scholar 

  13. Mani, S., J. Sundaram, and K. C. Das (2016) Process simulation and modeling: Anaerobic digestion of complex organic matter. Biomass Bioenergy. 93: 158–167.

    CAS  Google Scholar 

  14. Yu, H. Q. and H. H. Fang (2001) Acidification of mid- and high-strength dairy wastewaters. Water Res. 35: 3697–3705.

    CAS  PubMed  Google Scholar 

  15. Oladejo, J., K. Shi, X. Luo, G. Yang, and T. Wu (2019) A review of sludge-to-energy recovery methods. Energies. 12: 60.

    CAS  Google Scholar 

  16. Odnell, A., M. Recktenwald, K. Stensén, B. H. Jonsson, and M. Karlsson (2016) Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion. Water Res. 103: 462–471.

    CAS  PubMed  Google Scholar 

  17. Meegoda, J. N., B. Li, K. Patel, and L. B. Wang (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int. J. Environ. Res. Public. Health. 15: 2224.

    CAS  PubMed Central  Google Scholar 

  18. Kim, O. S, Y. J. Cho, K. Lee, S. H. Yoon, M. Kim, H. Na, S. C. Park, Y. S. Jeon, J. H. Lee, H. Yi, S. Won, and J. Chun (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716–721.

    CAS  PubMed  Google Scholar 

  19. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  21. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783–791.

    Google Scholar 

  22. Shen, D., J. Yin, X. Yu, M. Wang, Y. Long, J. Shentu, and T. Chen (2017) Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Bioresour. Technol. 227: 125–132.

    CAS  PubMed  Google Scholar 

  23. Pera, L. M., C. M. Romero, M. D. Baigori, and G. R. Castro (2006) Catalytic properties of lipase extracts from Aspergillus niger. Food Technol. Biotechnol. 44: 247–252.

    CAS  Google Scholar 

  24. APHA-AWWA-WEF (2005) Standard Methods for the Examination of Water and Wastewater. 21st ed., American Public Health Association, Washington DC, USA.

    Google Scholar 

  25. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    CAS  Google Scholar 

  26. Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    CAS  PubMed  Google Scholar 

  27. Elefsiniotis, P. and W. K. Oldham (1994) Substrate degradation patterns in acid-phase anaerobic digestion of municipal primary sludge. Environ. Technol. 15: 741–751.

    CAS  Google Scholar 

  28. Luo, K., Q. Yang, X. M. Li, G. J. Yang, Y. Liu, D. B. Wang, W. Zheng, and G. M. Zeng (2012) Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase. Biochem. Eng. J. 62: 17–21.

    CAS  Google Scholar 

  29. Roman, H. J., J. E. Burgess, and B. I. Pletschke (2006) Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. Afr. J. Biotechnol. 5: 963–967.

    CAS  Google Scholar 

  30. Lante, A., F. Tinello, and G. Lomolino (2013) Effect of UV light on microbial proteases: From enzyme inactivation to antioxidant mitigation. Innov. Food Sci. Emerg.Technol. 17: 130–134.

    CAS  Google Scholar 

  31. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. Van Lier (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 59: 927–934.

    CAS  PubMed  Google Scholar 

  32. Li, L., R. Wang, Z. Jiang, W. Li, G. Liu, and C. Chen (2019) Anaerobic digestion of tobacco stalk: biomethane production performance and kinetic analysis. Environ. Sci. Pollut. Res. 26: 14250–14258.

    CAS  Google Scholar 

  33. Contesini, F. J., R. R. de Melo, and H. H. Sato (2018) An overview of Bacillus proteases: from production to application. Crit. Rev. Biotechnol. 38: 321–334.

    CAS  PubMed  Google Scholar 

  34. Melani, N. B., E. B. Tambourgi, and E. Silveira (2019) Lipases: From production to applications. Sep. Purif. Rev. 1–16.

    Google Scholar 

  35. Passos, F., A. Hom-Diaz, P. Blanquez, T. Vicent, and I. Ferrer (2016) Improving biogas production from microalgae by enzymatic pretreatment. Bioresour. Technol. 199: 347–351.

    CAS  PubMed  Google Scholar 

  36. Li, M., B. Xiao, X. Wang, and J. Liu (2015) Consequences of sludge composition on combustion performance derived from thermogravimetry analysis. Waste Manag. 35: 141–147.

    CAS  PubMed  Google Scholar 

  37. Wang, D., M. Ji, and C. Wang (2014) The stimulating effects of the addition of glucose on denitrification and removal of recalcitrant organic compounds. Braz. J. Chem. Eng. 31: 9–18.

    CAS  Google Scholar 

  38. VCF da Silva, F. J. Contesini, and P. de O. Carvalho (2008) Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study. J. Braz Chem. Soc. 19: 1468–1474.

    Google Scholar 

  39. Tang, X. Y., B. Wu, H. J. Ying, and B. F. He (2010) Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121. Appl. Biochem. Biotech. 160: 1017–1031.

    CAS  Google Scholar 

  40. Sangeetha, R., A. Geetha, and I. Arulpandi (2010) Concomitant production of protease and lipase by Bacillus licheniformis VSG1: Production, purification and characterization. Braz. J. Microbiol. 41: 179–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cirne, D. G., X. Paloumet, L. Björnsson, M. M. Alves, and B. Mattiasson (2007) Anaerobic digestion of lipid-rich waste— Effects of lipid concentration. Renew. Energy. 32: 965–975.

    CAS  Google Scholar 

  42. Ramirez, I., A. Mottet, H. Carrère, S. Déléris, F. Vedrenne, and J. P. Steyer (2009) Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res. 43: 3479–3492.

    CAS  PubMed  Google Scholar 

  43. Müller, J. A. (2001) Prospects and problems of sludge pre-treatment processes. Water Sci. Technol. 44: 121–128.

    PubMed  Google Scholar 

  44. Waclawek, S., K. Grübel, D. Silvestri, V. V. T. Padil, M. Waclawek, M. Cerník, and R. S. Varma (2019) Disintegration of wastewater activated sludge (WAS) for improved biogas production. Energies. 12: 21.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Korea Institute of Energy Technology Evaluation and Planning, Republic of Korea (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20163030091540). This work was also supported by the ‘Human Resources Program in Energy Technology’ of the KETEP Grant, funded by MOTIE, Republic of Korea (No. 20144030200460).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhwan Hwang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongco, J.V., Kim, S., Oh, BR. et al. Enhancement of Hydrolysis and Biogas Production of Primary Sludge by Use of Mixtures of Protease and Lipase. Biotechnol Bioproc E 25, 132–140 (2020). https://doi.org/10.1007/s12257-019-0302-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0302-4

Keywords

Navigation