Skip to main content
Log in

Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 Using Jerusalem Artichoke Extract

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the present study, we evaluated extract of Jerusalem artichoke tubers (JAT) as a substrate for the production of lipid containing high levels of docosahexaenoic acid (DHA) by cultivated Aurantiochytrium sp. KRS101, an oleaginous protist. The optimal conditions for cultivation determined using response surface methods were as follows: pH, 5.9; enzyme loading, 282.6; and temperature, 27.7°C. The maximal levels of lipid (16.4 g/L) and productivity (3.6 g/L/d) were obtained during fed-batch fermentation, which achieved a DHA yield of 7.9 g/L (>48% of total fatty acids by weight). Moreover, JAT was more economical, reducing costs of expensive yeast extract as a nitrogen source by about 40%. These results suggest that JAT may be further explored as a low-cost feedstock for lipid production using microalgae strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simopoulos, A. P. (1999) Essential fatty acids in health and chronic disease. Am. J. Clin. Nut. 70: 560S–509S.

    Article  CAS  Google Scholar 

  2. Innis, S. M. (2007) Fatty acids and early human development. Early Hum. Dev. 83: 761–766.

    Article  CAS  PubMed  Google Scholar 

  3. Helwani, Z., J.M. Othman, N. Aziz, M. J. N. Fernando, and J. Kim (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Furl. Proc. Technol. 90: 1193–1206.

    Article  CAS  Google Scholar 

  4. Kim, K., J. E. Kim, B. G. Ryu, S. Park, Y. E. Choi, and J. W. Yang (2013) A novel fed–batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour. Technol. 135: 269–274.

    CAS  PubMed  Google Scholar 

  5. Barclay, W. R., K. M. Meager, and J. R. Abril (1994) Heterotrophic production of long–chain omega–3–fatty–acids utilizing algae and algae–like microorganisms. J. Appl. Phycol. 6: 123–129.

    Article  CAS  Google Scholar 

  6. Amiri–Jami, M., G. Lapointe, and M. W. Griffiths (2014) Engineering of EPA/DHA omega–3 fatty acid production by Lactococcus lactis subsp. Cremoris MG1363. Appl. Microbiol. Biotechnol. 98: 3071–3080.

    Article  CAS  PubMed  Google Scholar 

  7. Ruiz–Lopez, N., O. Sayanova, J. A. Napier, and R. P. Haslam (2012) Metabolic engineering of the omega–3 long chin polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J. Exp. Bot. 63: 2397–2410.

    Article  CAS  PubMed  Google Scholar 

  8. Hong, W. K., A. N. Yu, S. Y. Heo, B. R. Oh, C. H. Kim, J. H. Shon, J. W. Yang, A. Kondo, and J. W. Seo (2013) Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101. Bioprocess Biosys. Eng. 36: 959–963.

    Article  CAS  Google Scholar 

  9. Ratledge, C. (2004) Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86: 807–815.

    Article  CAS  PubMed  Google Scholar 

  10. Chi, Z., B. Hu, Y. Liu, C. Frear, Z. Wen, and S. Chen (2007) Production of omega–3 polyunsaturated fatty acids from cull potato using an algae culture process. Appl. Biochem. Biotechnol. 137–140: 805–815.

    PubMed  Google Scholar 

  11. Kim, S. H., J. M. Park, and C. H. Kim (2013) Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Appl. Biochem. Biotechnol. 169: 1531–1545.

    Article  CAS  PubMed  Google Scholar 

  12. Liang, Y., N. Sarkany, Y. Cui, J. Yesuf, J. Trushenski, and J. W. Blackburn (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacimum SR21. Bioresour. Technol. 101: 3623–3627.

    Article  CAS  PubMed  Google Scholar 

  13. Ryu, B. G., K. Kim, J. Kim, J. I. Han, and J. W. Yang (2013) Use of organic waste from the brewery industry for high–density cultivation of the docosahexaenoic acid–rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol. 129: 351–359.

    Article  CAS  PubMed  Google Scholar 

  14. Chang, G., N. Gao, G. Tian, Q. Wu, M. Chang, and X. Wang (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 142: 400–406.

    CAS  PubMed  Google Scholar 

  15. Scott, S. D., R. R. Armenta, K. T. Berryman, and A. W. Norman (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enz. Microb. Technol. 48: 267–272.

    Article  CAS  Google Scholar 

  16. Swanton, C. J., P. B. Cavers, D. R. Clements, and M. J. Moore (1992) The biology of Canadian weeds, 101. Helianthus tuberous L. Can. J. Plant Sci. 72: 1367–1382.

    Article  Google Scholar 

  17. Szambelan, K., J. Nowak, and Z. Czarnecki (2004). Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol. Let. 26: 845–848.

    Article  CAS  Google Scholar 

  18. Bekers, M., M. Grube, D. Upite, E. Kaminska, R. Linde, R. Scherbaka, and A. Danilevics (2007) Carbohydrates in Jerusalem artichoke powder suspension. Nutri. Food Sci. 37: 42–49.

    Article  Google Scholar 

  19. Zhao, C. H., W. Cui, X. Y. Liu, Z. M. Chi, and C. Madzak (2010) Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin–containing materials. Metab. Eng. 12: 510–517.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, X., S. Wu, C. Hu, Q. Wang, Y. Hua, and Z. K. Zhao (2010) Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J. Ind. Microbiol. Biotechnol. 37: 581–585.

    Article  CAS  PubMed  Google Scholar 

  21. Sung, M., Y. H. Seo, S. Han, and J. I. Han (2014) Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke. Bioresour. Technol. 155: 77–83.

    Article  CAS  PubMed  Google Scholar 

  22. Li, D., J. Y. Dai, and Z. L. Xiu (2010) A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2.3–butanediol by Klebsiella pneumoniae. Bioresour. Technol. 101: 8342–8347.

    Article  CAS  PubMed  Google Scholar 

  23. Sun, L. H., X. D. Wang, J. Y. Dai, and Z. L. Xiu (2009) Microbial production of 2,3–butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 82: 847–852.

    Article  CAS  PubMed  Google Scholar 

  24. Kaldy, M. S., A. Johnston, and D. B. Wilson (1980). Nutritive value of Indian bread–root, squaw–root, and Jerusalem artichoke. Econ. Bot. 34: 352–357.

    Article  Google Scholar 

  25. Kim, J. K., B. R. Oh, H. J. Shin, C. Y. Eom, and S. W. Kim (2008) Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem. 43: 1308–1312.

    Article  CAS  Google Scholar 

  26. Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, J. H. Son, D. H. Park, and C. H. Kim (2012) Fermentation strategies for 1,3–propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by–product formation. Bioprocess Biosys. Eng. 35: 159–165.

    Article  CAS  Google Scholar 

  27. Burja, A. M., H. Radianingtyas, A. Windust, and C. J. Barrow (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega–3 production. Appl. Microbiol. Biotechnol. 72: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  28. Park, J. M., B. R. Oh, I. Y. Kang, S. Y. Heo, J. W. Seo, S. M. Park, W. K. Hong, and C. H. Kim (2017) Enhancement of 2,3–butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity. Microbiol. Biotechnol. 44: 1107–1113.

    Article  CAS  Google Scholar 

  29. Paul, G. C., C. A. Kent, and C. R. Thomas (1992) Quantitative characterization of vacuolization in Penicillium chyrsogenum using automatic image analysis. Food Bioprod. Process. 70: 13–20.

    CAS  Google Scholar 

  30. Margaritis, A. and P. Bajpai (1982) Ethanol production from Jerusalem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei. Biotechnol. Bioeng. 24: 941–953.

    Article  CAS  PubMed  Google Scholar 

  31. Oh, B. R., S. M. Lee, S. Y. Heo, J. W. Seo, and C. H. Kim (2018) Efficient production of 1,3–propanediol from crude glycerol by repeated fed–batch fermentation strategy of lactate and 2,3–butanediol deficient mutant of Klebsiella penimoniae. Microb. Cell Fact. 17: 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, G. Y., Z. Chi, B. Song, Z. P. Wang, and Z. M. Chi (2012) High level lipid productin by a novel inulinase–producing yeast Pichia guilliermondii Pcla22. Bioresour. Technol. 124: 77–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Ho Kim or Jeong-Woo Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, JH., Oh, BR., Ryu, SK. et al. Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 Using Jerusalem Artichoke Extract. Biotechnol Bioproc E 23, 726–732 (2018). https://doi.org/10.1007/s12257-018-0419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0419-x

Keywords

Navigation