Skip to main content
Log in

The Extract of Ramalina litoralis Inhibits Osteoclast Differentiation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Osteoporosis is a metabolic disorder that increases the risk of fractures of bone. Receptor activator of nuclear factor-kappa B ligand (RANKL) signaling ultimately activates nuclear factor-activated T cells c1 (NFATc1), a major transcription factor for osteoclast formation. Lichens are symbiotic organisms composed of fungi and algae partners, which are known to be rich repositories of natural metabolites. There was few investigational study on the effect of lichen substances for osteoporosis treatment. This study conducted to elucidate anti-osteoporosis effects of Ramalina litoralis, one of the common saxicolous lichens distributed in the coastal area of Korean Peninsula. In this study, we examined the effects of Ramalina litoralis extract on the osteoclast in osteoporosis. We studied the inhibition of genes and proteins associated with the inhibition of osteoclast by extracts, and the resorptive pit assay for osteoclast function. The extract of Ramalina litoralis reduced the levels of mRNA expression of NFATc1, osteoclast-related receptor (OSCAR), cathepsin K and tartaric acid-resistant phosphatase (TRAP). It also inhibited the translational expression of NFATc1, a major protein in osteoporosis. The inhibitory effect of extracts of Ramalina litoralis on osteoclast differentiation was confirmed using resorptive pit analysis. The extract of Ramalina litoralis inhibited the expression level of NFATcl through the RANKL signaling pathway. This study demonstrates the anti-osteoclastic effect of Ramalina litoralis extract, which can be applied for the effective treatment of osteoporosis, and will serve as an important candidate for making therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyle, W. J., W. S. Simonet, and D. L. Lacey (2003) Osteoclast differentiation and activation. Nature 423: 337–342.

    Article  CAS  PubMed  Google Scholar 

  2. Baud’huin, M., L. Duplomb, C. Ruiz Velasco, Y. Fortun, D. Heymann, and M. Padrines (2007) Key roles of the OPGRANK–RANKL system in bone oncology. Exp. Rev. Anticancer Ther. 7: 221–232.

    Article  Google Scholar 

  3. Takayanagi, H. (2007) The role of NFAT in osteoclast formation. Ann. N Y Acad. Sci. 1116: 227–237.

    Article  CAS  PubMed  Google Scholar 

  4. Takayanagi, H., S. Kim, T. Koga, H. Nishina, M. Isshiki, H. Yoshida, A. Saiura, M. Isobe, T. Yokochi, J. Inoue, E. F. Wagner, T. W. Mak, T. Kodama, and T. Taniguchi (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889–901.

    Article  CAS  PubMed  Google Scholar 

  5. Kono, M., H. Tanabe, Y. Ohmura, Y. Satta, and Y. Terai (2017) Physical contact and carbon transfer between a lichen–forming Trebouxia alga and a novel Alphaproteobacterium. Microbiology 163: 678–691.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, R., Y. Yang, S. Y. Park, T. T. Nguyen, Y. W. Seo, K. H. Lee, J. H. Lee, K. K. Kim, J. S. Hur, and H. Kim (2017) The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Scientific Reports 7: 8136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chauhan, R. and J. Abraham (2013) In vitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iran J. Basic Med. Sci. 16: 882–885.

    PubMed  PubMed Central  Google Scholar 

  8. Kim, K. J., M. H. Jung, Y. Lee, S. J. Hwang, H. B. Shin, J. S. Hur, and Y. J. Son (2018) Effect of usnic acid on osteoclastogenic activity. J. Clin. Med. 7: 345.

    Article  PubMed Central  Google Scholar 

  9. Feng, X. and J. M. McDonald (2011) Disorders of bone remodeling. Annu. Rev. Pathol. 6: 121–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin, T. and L. Li (2006) The stem cell niches in bone. J. Clin. Invest. 116: 1195–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mansour, A., G. Abou–Ezzi, E. Sitnicka, S. E. Jacobsen, A. Wakkach, and C. Blin–Wakkach (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209: 537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, J., L. Zeng, J. Xie, Z. Yue, H. Deng, X. Ma, C. Zheng, X. Wu, J. Luo, and M. Liu (2015) Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops. Sci. Rep. 5: 17605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng, H., X. Yu, P. Collin–Osdoby, and P. Osdoby (2006) RANKL stimulates inducible nitric–oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL–induced interferon–beta via NF–kappaB that restrains osteoclastogenesis and bone resorption. J. Biol. Chem. 281: 15809–15820.

    CAS  PubMed  Google Scholar 

  14. Matsumoto, M., T. Sudo, M. Maruyama, H. Osada, and M. Tsujimoto (2000) Activation of p38 mitogen–activated protein kinase is crucial in osteoclastogenesis induced by tumor necrosis factor. FEBS Lett. 486: 23–28.

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda, F., R. Nishimura, T. Matsubara, S. Tanaka, J. Inoue, S. V. Reddy, K. Hata, K. Yamashita, T. Hiraga, T. Watanabe, T. Kukita, K. Yoshioka, A. Rao, and T. Yoneda (2004) Critical roles of c–Jun signaling in regulation of NFAT family and RANKL–regulated osteoclast differentiation. J. Clin. Invest. 114: 475–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koga, K., M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, T. Iwata, H. Ohnishi, T. Matozaki, T. Kodama, T. Taniguchi, H. Takayanagi, and T. Takai (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428: 758–763.

    Article  CAS  PubMed  Google Scholar 

  17. Hofbauer, L. C. and M. Schoppet (2004) Clinical implications of the osteoprotegerin/ RANKL/ RANK system for bone and vascular diseases. JAMA 292: 490–495.

    Article  CAS  PubMed  Google Scholar 

  18. Weiss, J. M., J. M. Weiss, A. C. Renkl, C. S. Maier, M. Kimmig, L. Liaw, T. Ahrens, S. Kon, M. Maeda, H. Hotta, T. Uede, and J. C. Simon (2001) Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J. Exp. Med. 194: 1219–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brömme, D. and K. Okamoto (1995) Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol. Chem. Hoppe Seyler 14: 379–384.

    Article  Google Scholar 

  20. Kafienah, W., D. Brömme, D. J. Buttle, L. J. Croucher, and A. P. Hollander (1998) Human cathepsin K cleaves native type I and II collagens at the N–terminal end of the triple helix. Biochem. J. 14: 727–732.

    Article  Google Scholar 

  21. Boonen, S., E. Rosenberg, F. Claessens, D. Vanderschueren, and S. Papapoulos (2012) Inhibition of cathepsin K for treatment of osteoporosis. Curr. Osteoporos Rep. 14: 73–79.

    Article  Google Scholar 

  22. Sapkota, M., L. Li, H. Choi, W. H. Gerwick, and Y. Soh (2015) Bromo–honaucin A inhibits osteoclastogenic differentiation in RAW 264.7 cells via Akt and ERK signaling pathways. Eur. J. Pharmacol. 769: 100–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otero, J. E., S. Dai, M. A. Alhawagri, I. Darwech, and Y. Abu–Amer (2010) IKKß activation is sufficient for RANK–independent osteoclast differentiation and osteolysis. J. Bone Miner. Res. 25: 1282–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheu, T. J., E. M. Schwarz, D. A. Martinez, R. A. O’Keefe, R. N. Rosier, M. J. Zuscik, and J. E. Puzas (2003) A phage display technique identifies a novel regulator of cell differentiation. J. Biol. Chem. 278: 438–443.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. H., K. Kim, H. M. Jin, I Song, B. U. Youn, S. H. Lee, Y. Choi, N Kim (2010) Negative feedback control of osteoclast formation through ubiquitin–mediated down–regulation of NFATc1. J. Biol. Chem. 285: 5224–5231.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Seoun Hur or Young-Jin Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Jeong, MH., Kim, KJ. et al. The Extract of Ramalina litoralis Inhibits Osteoclast Differentiation. Biotechnol Bioproc E 23, 634–640 (2018). https://doi.org/10.1007/s12257-018-0407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0407-1

Keywords

Navigation