Skip to main content
Log in

Calmodulin 2 Functions as an RNA Chaperone in Prokaryotic Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Plants express many calmodulin (CaM) isoforms. These proteins regulate the growth, development and environmental stress responses of plants by modulating targets. Herein, the Arabidopsis CaM2 isoform was found to be crucial for cold adaptation in prokaryotic cells, similar to the Escherichia coli cold shock protein CspA. Expressing CaM2 or CspA in the cold-sensitive E. coli BX04 mutant complemented the cold-sensitive phenotype under cold stress, but expression of CaM1, CaM7 or CML8 (CaM8) did not. Similar to RNA chaperones such as CspA, CaM2 strongly interacted with nucleic acids and its nucleic acid-binding capacity was much higher than that of CaM7, despite there being only a single amino acid difference between these two isoforms. Microscopic observation of CaM2-GFP revealed that CaM2 plays roles in both the nucleus and cytosol where RNA molecules are abundant. These results suggest that CaM2 can positively modulate cold stress responses by interacting with nucleic acid targets. Furthermore, CaM2 has both nucleic acid targets, similar to CaM7, and protein targets such as CAMTA3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xin, Z. and J. Browse (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 23: 893–902.

    Article  Google Scholar 

  2. Nedwell, D. B. (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101–111.

    Article  CAS  PubMed  Google Scholar 

  3. DeFalco, T. A., K. W. Bender, and W. A. Snedden (2009) Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 425: 27–40.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes, I. P. and A. M. Oliveira–Brett (2017) Calciuminduced calmodulin conformational change. Electrochemical evaluation. Bioelectrochemistr. 113: 69–78.

    CAS  Google Scholar 

  5. Elizabeth, M. and B. Janet (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologis. 159: 585–598.

    Article  CAS  Google Scholar 

  6. Virdi, A. S., S. Singh, and P. Singh (2015) Abiotic stress responses in plants: roles of calmodulin–regulated proteins. Front Plant Sci. 6: 809.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Munir, S., H. Liu, Y. Xing, S. Hussain, B. Ouyang, Y. Zhang, H. Li, and Z. Ye (2016) Overexpression of calmodulin–like (ShCML44) stress–responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci. Rep. 6: 31772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, N., C. Peng, D. Cheng, Q. Huang, G. Xu, F. Gao, and L. Chen (2013) The over–expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gen. 521: 32–37.

    Article  CAS  Google Scholar 

  9. Doherty, C. J., H. A. Van Buskirk, S. J. Myers, and M. F. Thomashow (2009) Roles for Arabidopsis CAMTA transcription factors in cold–regulated gene expression and freezing tolerance. Plant Cel. 21: 972–984.

    Article  CAS  Google Scholar 

  10. Chinnusamy, V., J. Zhu, and J. K. Zhu (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci. 12: 444–451.

    Article  CAS  Google Scholar 

  11. Klinkert, B. and F. Narberhaus (2009) Microbial thermosensors. Cell Mol. Life Sci. 66: 2661–2676.

    Article  CAS  PubMed  Google Scholar 

  12. Narberhaus, F., T. Waldminghaus, and S. Chowdhury (2006) RNA thermometers. FEMS Microbiol. Rev. 30: 3–16.

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein, J., N. S. Pollitt, and M. Inouye (1990) Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. US. 87: 283–287.

    Article  CAS  Google Scholar 

  14. Jiang, W., Y. Hou, and M. Inouye (1997) CspA, the major coldshock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272: 196–202.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, M. H. and R. Imai (2015) Determination of RNA chaperone activity using an Escherichia coli mutant. Methods Mol. Biol. 1259: 117–123.

    Article  CAS  PubMed  Google Scholar 

  16. Fischer, R., M. Koller, M. Flura, S. Mathews, M. A. Strehler–Page, J. Krebs, J. T. Penniston, E. Carafoli, and E. E. Strehler (1988) Multiple divergent mRNAs code for a single human calmodulin. J. Biol. Chem. 263: 17055–17062.

    CAS  PubMed  Google Scholar 

  17. Bender, K. W. and W. A. Snedden (2013) Calmodulin–related proteins step out from the shadow of their namesake. Plant Physiol. 163: 486–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abbas, N., J. P. Maurya, D. Senapati, S. N. Gangappa, and S. Chattopadhyay (2014) Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cel. 26: 1036–1052.

    Article  CAS  Google Scholar 

  19. Masui, Y., J. Coleman, and M. Inouye (1983) CHAPTER 2-multipurpose expression cloning vehicles in Escherichia coli, in experimental manipulation of gene expression. Academic Press 15–32.

    Google Scholar 

  20. Xia, B., H. Ke, and M. Inouye (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40: 179–188.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, C. K. and G. S. Harms (2016) Tracking and localization of calmodulin in live cells. Biochim. Biophys. Act. 1863: 2017–2026.

    Article  CAS  Google Scholar 

  22. Gong, Z., C.-H. Dong, H. Lee, J. Zhu, L. Xiong, D. Gong, B. Stevenson, and J.-K. Zhu (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cel. 17: 256–267.

    Article  CAS  Google Scholar 

  23. Kim, J. S., S. J. Park, K. J. Kwak, Y. O. Kim, J. Y. Kim, J. Song, B. Jang, C. H. Jung, and H. Kang (2007) Cold shock domain proteins and glycine–rich RNA–binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res. 35: 506–516.

    Article  CAS  PubMed  Google Scholar 

  24. Kwak, K. J., Y. O. Kim, and H. Kang (2005) Characterization of transgenic Arabidopsis plants overexpressing GR–RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007–3016.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S. H., J. D. Johnson, M. P. Walsh, J. E. Van Lierop, C. Sutherland, A. Xu, W. A. Snedden, D. Kosk–Kosicka, H. Fromm, N. Narayanan, and M. J. Cho (2000) Differential regulation of Ca2+/calmodulin–dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem. J. 350: 299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoo, J. H., C. Y. Park, J. C. Kim, W. D. Heo, M. S. Cheong, H. C. Park, M. C. Kim, B. C. Moon, M. S. Choi, Y. H. Kang, J. H. Lee, H. S. Kim, S. M. Lee, H. W. Yoon, C. O. Lim, D.-J. Yun, S. Y. Lee, W. S. Chung, and M. J. Cho (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem. 280: 3697–3706.

    Article  CAS  PubMed  Google Scholar 

  27. Reddy, V. S., F. Safadi, R. E. Zielinski, and A. S. N. Reddy (1999) Interaction of a kinesin–like protein with calmodulin isoforms from Arabidopsis. J. Biol. Chem. 274: 31727–31733.

    Article  CAS  PubMed  Google Scholar 

  28. Yamniuk, A. P. and H. J. Vogel (2005) Structural investigation into the differential target enzyme regulation displayed by plant calmodulin isoforms. Biochemistr. 44: 3101–3111.

    Article  CAS  Google Scholar 

  29. Kumar, S., M. Mazumder, N. Gupta, S. Chattopadhyay, and S. Gourinath (2016) Crystal structure of Arabidopsis thaliana calmodulin 7 and insight into its mode of DNA binding. FEBS Lett. 590: 3029–3039.

    Article  CAS  PubMed  Google Scholar 

  30. Perochon, A., D. Aldon, J.-P. Galaud, and B. Ranty (2011) Calmodulin and calmodulin–like proteins in plant calcium signaling. Biochimi. 93: 2048–2053.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2016R1D1A3B03930535) and by the Ministry of Science, ICT & Future Planning (no. 2015R1C1A2A01054562), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi Sun Cheong or Jin-Hyo Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, M.S., Chi, YH., Lee, JY. et al. Calmodulin 2 Functions as an RNA Chaperone in Prokaryotic Cells. Biotechnol Bioproc E 23, 448–455 (2018). https://doi.org/10.1007/s12257-018-0172-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0172-1

Keywords

Navigation