Skip to main content
Log in

Mechanisms of Salinity Control in Sea Bass

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Sea bass can regulate the concentration of Na+, K+, and Cl-, among other ions, in their blood, skin, gills, and kidney. Therefore, the salinity of the water does not have a great influence on their metabolism, and sea bass can live in both sea and freshwater in accordance with the salt concentration. Most salinity control occurs in the gills, primarily through the control of chloride cells present there. The concentration of ions in the blood is controlled by the cotransporter Na+ / K+ / 2Cl- (NKCC) in the chloride cell, and the subunits of Na+ / K+ ATPase (NKA) function to maintain homeostasis. The expression of NKA is regulated by subunits of the protein FXYD, allowing the sea bass to survive in compliance with the salinity. In this way, it is possible for sea bass to live in sea and freshwater by controlling the salinity of its body using functions of various channels, proteins, and genes present in the chloride cells of sea bass. In this study, we investigated recent studies of salt control mechanisms in sea bass and their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nebel, C. (2005) Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: Involvement of gills and urinary system. J. Experim. Biol. 208: 3859–3871.

    Article  CAS  Google Scholar 

  2. Marshall, W. and S. Bryson (1998) Transport mechanisms of seawater teleost chloride cells: An inclusive model of a multifunctional cell. Comparat. Biochem. Physiol. Part A: Mol. Integrat. Physiol. 119: 97–106.

    Article  CAS  Google Scholar 

  3. Pisam, M. and A. Rambourg (1991) Mitochondria-rich cells in the gill epithelium of teleost fishes: An ultrastructural approach. pp. 191–232. In: International Review of Cytology. Elsevier.

    Google Scholar 

  4. Zadunaisky, J. (1984) The chloride cell: The active transport of chloride and the paracellular pathways. pp. 129–176. In: Fish physiology. Elsevier.

    Google Scholar 

  5. Hootman, S. R. and C. W. Philpott (1980) Accessory cells in teleost branchial epithelium. Am. J. Physiol.-Regul. Integrat. Comparat. Physiol. 238: R199–R206.

    Article  CAS  Google Scholar 

  6. Flik, G., P. M. Verbost, and S. E. W. Bonga (1995) Calcium Transport Processes in Fishes. pp. 317–342. In: Fish physiology. Elsevier.

    Google Scholar 

  7. De Renzis, G. and M. Bornancin (1984) Ion Transport and Gill Atpases. pp. 65–104. In: Fish physiology. Elsevier.

    Google Scholar 

  8. McCormick, S. D. (1995) Hormonal Control of Gill Na+, K+-ATPase and Chloride Cell Function. pp. 285–315. In: Fish physiology. Elsevier.

    Google Scholar 

  9. Hirose, S. (2003) Molecular biology of major components of chloride cells. Comparat. Biochem. Physiol. Part B: Biochem. Mol. Biol. 136: 593–620.

    Article  CAS  Google Scholar 

  10. Evans, D. H., P. M. Piermarini, and W. Potts (1999) Ionic transport in the fish gill epithelium. J. Experim. Zool. Part A: Ecol. Gen. Physiol. 283: 641–652.

    Article  CAS  Google Scholar 

  11. Greenwell, M. G., J. Sherrill, and L. A. Clayton (2003) Osmoregulation in fish: Mechanisms and clinical implications. Veterin. Clin. North America: Exotic Animal Pract. 6: 169–189.

    Google Scholar 

  12. Varsamos, S., C. Nebel, and G. Charmantier (2005) Ontogeny of osmoregulation in postembryonic fish: A review. Comparat. Biochem. Physiol. Part A: Mol. Integrat. Physiol. 141: 401–429.

    Article  CAS  Google Scholar 

  13. Imsland, A. K. (2003) Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquacult. 218: 671–683.

    Article  CAS  Google Scholar 

  14. Varsamos, S. (2002) Location and morphology of chloride cells during the post-embryonic development of the european sea bass, Dicentrarchus labrax. Anat. Embryol. 205: 203–213.

    Article  PubMed  Google Scholar 

  15. Russell, J. M. (2000) Sodium-potassium-chloride cotransport. Physiol. Rev. 80: 211–276.

    Article  CAS  PubMed  Google Scholar 

  16. Cutler, C. P. and G. Cramb (2002) Two isoforms of the Na+/K+/2Cl-cotransporter are expressed in the European eel (Anguilla anguilla). Biochim. Biophysic. Acta 1566: 92–103.

    Article  CAS  Google Scholar 

  17. Delpire, E. and D. B. Mount (2002) Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu. Review Physiol. 64: 803–843.

    Article  CAS  Google Scholar 

  18. Lytle, C. (1995) Distribution and diversity of Na-K-Cl cotransport proteins: A study with monoclonal antibodies. Am. J. Physiol. Cell Physiol. 269: C1496–C1505.

    Article  CAS  Google Scholar 

  19. Bachmann, S. (1999) Sodium transport-related proteins in the mammalian distal nephron–distribution, ontogeny and functional aspects. Anat. Embryol. 200: 447–468.

    Article  CAS  PubMed  Google Scholar 

  20. Lorin-Nebel, C. (2006) The Na+/K+/2Cl-cotransporter in the sea bass Dicentrarchus labrax during ontogeny: Involvement in osmoregulation. J. Experim. Biol. 209: 4908–4922.

    Article  CAS  Google Scholar 

  21. Marshall, W., E. Lynch, and R. Cozzi (2002) Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to seawater. J. Experim. Biol. 205: 1265–1273.

    CAS  Google Scholar 

  22. Pelis, R. M., J. Zydlewski, and S. D. McCormick (2001) Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting. Am. J. Physiol. Regul. Integrat. Comp. Physiol. 280: R1844–R1852.

    Article  CAS  Google Scholar 

  23. Bossus, M. (2013) The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax. J. Comparat. Physiol. B 183: 641–662.

    Article  CAS  Google Scholar 

  24. Bodinier, C. (2009) Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of juvenile Dicentrarchus labrax exposed to seawater and freshwater. Comparat. Biochem. Physiol. Part A: Mol. Integrat. Physiol. 153: 345–351.

    Article  CAS  Google Scholar 

  25. Giffard-Mena, I. (2008) Adaptation of the sea-bass (Dicentrarchus labrax) to freshwater: role of aquaporins and Na+/K+-ATPases. Comparat. Biochem. Physiol. Part A: Mol. Integrat. Physiol. 150: 332–338.

    Article  CAS  Google Scholar 

  26. Nebel, C. (2005) Morphofunctional ontogeny of the urinary system of the European sea bass Dicentrarchus labrax. Anat. Embryol. 209: 193–206.

    Article  PubMed  Google Scholar 

  27. Bodinier, C. (2009) Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of Dicentrarchus labrax during ontogeny. J. Anat. 214: 318–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Estévez, R. and T. Jentsch (2002) CLC chloride channels: Correlating structure with function. Curr. Opin. Struct. Biol. 12: 531–539.

    Article  PubMed  Google Scholar 

  29. Jentsch, T. J. (2002) Molecular structure and physiological function of chloride channels. Physiol. Rev. 82: 503–568.

    Article  CAS  PubMed  Google Scholar 

  30. Jentsch, T. J.(2005) Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu. Rev. Physiol. 67: 779–807.

    Article  CAS  PubMed  Google Scholar 

  31. Meier, M. (2001) Structure of human cystathionine ß-synthase: A unique pyridoxal 5'-phosphate-dependent heme protein. The EMBO J. 20: 3910–3916.

    Article  CAS  PubMed  Google Scholar 

  32. Dave, S. (2010) Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker. Channels 4: 289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, C.-H. and T.-H. Lee (2010) Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus. Physiol. Biochem. Zool. 84: 54–67.

    Article  CAS  Google Scholar 

  34. Miyazaki, H.(2002) Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwateradapted tilapia kidney. Proc. Nat. Acad. Sci. 99: 15782–15787.

  35. Vessey, J. P. (2004) Hyposmotic activation of ICl, swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem. Cell Biol. 82: 708–718.

    Article  CAS  PubMed  Google Scholar 

  36. Duan, D. (2001) Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody. J. Physiol. 531: 437–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alvarado, N. E. (2006) Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment. Aquat. Toxicol. 77: 64–77.

    Article  CAS  PubMed  Google Scholar 

  38. Blondeau-Bidet, E. (2016) Molecular characterization and expression of Na+/K+-ATPase a1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer. Fish Physiol. Biochem. 42: 1647–1664.

    Article  CAS  PubMed  Google Scholar 

  39. Chang, C.-Y. (2014) FXYD2c plays a potential role in modulating Na+/K+-ATPase activity in HK-2 cells upon hypertonic challenge. J. Memb. Biol. 247: 93–105.

    Article  CAS  Google Scholar 

  40. Geering, K. (2006) FXYD proteins: New regulators of Na-KATPase. Am. J. Physiol. Renal Physiol. 290: F241–F250.

    Article  CAS  PubMed  Google Scholar 

  41. Tang, C.-H., D.-Y. Lai, and T.-H. Lee (2012) Effects of salinity acclimation on Na+/K+–ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comp. Biochem. Physiol. Part A: Mol. Integrat. Physiol. 163: 302–310.

    Article  CAS  Google Scholar 

  42. Breves, J. P. (2014) Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase a-subunit gene expression in Nile tilapia, Oreochromis niloticus. J. Comp. Physiol. B 184: 513–523.

    Article  CAS  PubMed  Google Scholar 

  43. Blanco, G. and R. W. Mercer (1998) Isozymes of the Na-KATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol. Renal Physiol. 275: F633–F650.

    Article  CAS  Google Scholar 

  44. Ching, B. (2015) Na+/K+-ATPase a-subunit (nkaa) isoforms and their mRNA expression levels, overall Nkaa protein abundance, and kinetic properties of Nka in the skeletal muscle and three electric organs of the electric eel, Electrophorus electricus. PLoS One 10: e0118352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCormick, S. D., A. Regish, and A. Christensen (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J. Experim. Biol. 212: 3994–4001.

    Article  CAS  Google Scholar 

  46. Tipsmark, C. K. (2008) Identification of FXYD protein genes in a teleost: Tissue-specific expression and response to salinity change. Am. J. Physiol. Regul. Integrat. Comp. Physiol. 294: R1367–R1378.

    Article  CAS  Google Scholar 

  47. Min, B. H. (2015) Gill Na+/K+-ATPase activity and expression in black sea bream Acanthopagrus schlegelii exposed to a hyposaline environment. Kor. J. Fish. Aquatic Sci. 48: 64–70.

    CAS  Google Scholar 

  48. Park, K. Y. (2015) “Method to decrease mortality rate of trout fish on acclimation to seawater”. Korea patent KR20160093894A.

    Google Scholar 

  49. Jang, Y. J. (2002) “Method of black seabream culture in fresh water”. Korea patent KR20030090977A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Assaf A. Gilad or Jonghoon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Kim, S., Seo, Y. et al. Mechanisms of Salinity Control in Sea Bass. Biotechnol Bioproc E 23, 271–277 (2018). https://doi.org/10.1007/s12257-018-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0049-3

Keywords

Navigation