Skip to main content
Log in

Enhanced Production of β-D-glycosidase and α-L-arabinofuranosidase in Recombinant Escherichia coli in Fed-batch Culture for the Biotransformation of Ginseng Leaf Extract to Ginsenoside Compound K

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ginsenoside compound K is an essential ingredient in nutritional supplements, cosmetics, and traditional medicines. However, cultivation for the production of enzymes involved in ginsenoside biotransformation has not been attempted in a fermenter. The host strain Escherichia coli ER2566 and the constitutive pHCE vector were selected for the efficient production of β-D-glycosidase, and expression medium composition to produce Sulfolobus solfataricus β-glycosidase expressed in E. coli was optimized in flask and batch cultures. The total activity of β-Dglycosidase in fed-batch culture using a fermenter increased 14-fold before optimization. S. solfataricus β-D-glycosidase and Thermotoga petrophila α-L-arabinofuranosidase were produced in a fed-batch culture. These two enzymes completely converted protopanaxadiol-type ginsenosides in ginseng leaf extract obtained from discarded ginseng leaves as a renewable substrate to compound K. The effective bioprocess for compound K production developed here will contribute to the industrial biological production of compound K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, J. M., Q. Yao, and C. Chen (2009) Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 7: 293–302.

    Article  CAS  Google Scholar 

  2. Bae, E. A., M. K. Choo, E. K. Park, S. Y. Park, H. Y. Shin, and D. H. Kim (2002) Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25: 743–747.

    Article  CAS  Google Scholar 

  3. Lee, S. Y., G. T. Kim, S. H. Roh, J. S. Song, H. J. Kim, S. S. Hong, S. W. Kwon, and J. H. Park (2009) Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd. Pharmazie 64: 242–247.

    CAS  Google Scholar 

  4. Yoshikawa, M., T. Morikawa, Y. Kashima, K. Ninomiya, and H. Matsuda (2003) Structures of new dammarane-type Triterpene Saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal Ginseng Saponins. J. Nat. Prod. 66: 922–927.

    Article  CAS  Google Scholar 

  5. Wang, L., Y. Zhang, J. Chen, S. Li, Y. Wang, L. Hu, L. Wang, and Y. Wu (2012) Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J. Surg. Res. 176: 267–274.

    Article  CAS  Google Scholar 

  6. Cho, W. C., W. S. Chung, S. K. Lee, A. W. Leung, C. H. Cheng, and K. K. Yue (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 550: 173–179.

    Article  CAS  Google Scholar 

  7. Kang, T. H., H. M. Park, Y. B. Kim, H. Kim, N. Kim, J. H. Do, C. Kang, Y. Cho, and S. Y. Kim (2009) Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J. Ethnopharmacol. 123: 446–451.

    Article  CAS  Google Scholar 

  8. Park, C. S., M. H. Yoo, K. H. Noh, and D. K. Oh (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9–19.

    Article  CAS  Google Scholar 

  9. Son, J. W., H. J. Kim, and D. K. Oh (2008) Ginsenoside Rd production from the major ginsenoside Rb1 by β-glucosidase from Thermus caldophilus. Biotechnol. Lett. 30: 713–716.

    Article  CAS  Google Scholar 

  10. Kim, M. K., J. W. Lee, K. Y. Lee, and D. C. Yang (2005) Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43: 456–462.

    CAS  Google Scholar 

  11. Shin, K. C. and D. K. Oh (2016) Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit. Rev. Biotechnol. 36: 1036–1049.

    Article  CAS  Google Scholar 

  12. Ye, L., C. Q. Zhou, W. Zhou, P. Zhou, D. F. Chen, X. H. Liu, X. L. Shi, and M. Q. Feng (2010) Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7. Bioresour. Technol. 101: 7872–7876.

    Article  CAS  Google Scholar 

  13. Wakabayashi, C., K. Murakami, H. Hasegawa, J. Murata, and I. Saiki (1998) An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophy. Res. Commun. 246: 725–730.

    Article  CAS  Google Scholar 

  14. Lee, H. U., E. A. Bae, M. J. Han, N. J. Kim, and D. H. Kim (2005) Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int. 25: 1069–1073.

    Article  CAS  Google Scholar 

  15. Oh, S. H., H. Q. Yin, and B. H. Lee (2004) Role of the Fas/Fas ligand death receptor pathway in ginseng saponin metaboliteinduced apoptosis in HepG2 cells. Arch. Pharm. Res. 27: 402–406.

    Article  CAS  Google Scholar 

  16. Lim, T. G., A. J. Jeon, J. H. Yoon, D. Song, J. E. Kim, J. Y. Kwon, J. R. Kim, N. J. Kang, J. S. Park, M. H. Yeom, D. K. Oh, Y. Lim, C. C. Lee, C. Y. Lee, and K. W. Lee (2015) 20-O-β-DGlucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. Int. J. Mol. Med. 35: 1388–1394.

    Article  CAS  Google Scholar 

  17. Shin, D. J., J. E. Kim, T. G. Lim, E. H. Jeong, G. Park, N. J. Kang, J. S. Park, M. H. Yeom, D. K. Oh, A. M. Bode, Z. Dong, H. J. Lee, and K. W. Lee (2014) 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol suppresses UV-Induced MMP-1 expression through AMPK-mediated mTOR inhibition as a downstream of the PKA-LKB1 pathway. J. Cell. Biochem. 115: 1702–1711.

    Article  CAS  Google Scholar 

  18. Shin, K. C., H. Y. Choi, M. J. Seo, and D. K. Oh (2015) Compound K production from red ginseng extract by β-glycosidase from Sulfolobus solfataricus supplemented with α-Larabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One 10: e0145876.

    Article  Google Scholar 

  19. Poo, H., J. J. Song, S. P. Hong, Y. H. Choi, S. W. Yun, J. H. Kim, S. C. Lee, S. G. Lee, and M. H. Sung (2002) Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-alpha. Biotechnol. Lett. 24: 1185–1189.

    Article  CAS  Google Scholar 

  20. Hsu, B. Y., T. J. Lu, C. H. Chen, S. J. Wang, and L. S. Hwang (2013) Biotransformation of ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi (Ganoderma lucidum). Food Chem. 141: 4186–4193.

    Article  CAS  Google Scholar 

  21. Zhou, W., Q. Yan, J. Y. Li, X. C. Zhang, and P. Zhou (2008) Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229. J. Appl. Microbiol. 104: 699–706.

    Article  CAS  Google Scholar 

  22. Choi, H. J., E. A. Kim, D. H. Kim, and K. S. Shin (2014) The bioconversion of red ginseng ethanol extract into compound K by Saccharomyces cerevisiae HJ-014. Mycobiol. 42: 256–261.

    Article  Google Scholar 

  23. Noh, K. H. and D. K. Oh (2009) Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius. Biol. Pharm. Bull. 32: 1830–1835.

    Article  CAS  Google Scholar 

  24. Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh (2009) Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73: 316–321.

    Article  CAS  Google Scholar 

  25. Kim, B. H., S. Y. Lee, H. J. Cho, S. N. You, Y. J. Kim, Y. M. Park, J. K. Lee, M. Y. Baik, C. S. Park, and S. C. Ahn (2006) Biotransformation of Korean Panax ginseng by Pectinex. Biol. Pharm. Bull. 29: 2472–2478.

    Article  CAS  Google Scholar 

  26. Kim, E. H., S. Lim, S. O. Kim, S. H. Ahn, and Y. J. Choi (2013) Optimization of enzymatic treatment for compound K production from white ginseng extract by response surface methodology. Biosci. Biotechnol. Biochem. 77: 1138–1140.

    Article  CAS  Google Scholar 

  27. Shin, K. C., H. J. Oh, B. J. Kim, and D. K. Oh (2013) Complete conversion of major protopanaxadiol ginsenosides to compound K by the combined use of a-L-arabinofuranosidase and β-galactosidase from Caldicellulosiruptor saccharolyticus and β-glucosidase from Sulfolobus acidocaldarius. J. Biotechnol. 167: 33–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Additional information

Electronic Supplementary Material (ESM) The online version of this article (doi: 10.1007/s12257-018-0027-9) contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, TH., Yang, EJ., Shin, KC. et al. Enhanced Production of β-D-glycosidase and α-L-arabinofuranosidase in Recombinant Escherichia coli in Fed-batch Culture for the Biotransformation of Ginseng Leaf Extract to Ginsenoside Compound K. Biotechnol Bioproc E 23, 183–193 (2018). https://doi.org/10.1007/s12257-018-0027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0027-9

Keywords

Navigation