Skip to main content
Log in

Heterologous production of clavulanic acid intermediates in Streptomyces venezuelae

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Heterologous expression can enhance production of diverse secondary metabolites by redirecting precursor pools towards compound of interest. In this study, Streptomyces venezuelae YJ028 was utilized as the heterologous host for the expression of four structural clavulanic acid biosynthesis genes, which encode carboxyethylarginine synthase (ceas2), β-lactam synthetase (bls2), clavaminate synthase (cas2), and proclavaminate amidinohydrolase (pah2). These genes were cloned into pIBR25 expression vector containing ermE* promoter to generate pBS4. The cas2 gene was also cloned into pSET152 to generate pCas2. It was then integrated into the genome of S. venezuelae YJ028. Upon metabolite profiling of recombinant strains by ultra-pressure liquid chromatography-photodiode array (UPLC-PDA) and high resolution liquid chromatography quadruple time-offlight electrospray ionization mass spectrometry (HR-LC-QTOF-ESI/MS), the production of following clavulanic acid intermediates in S. venezuelae recombinant were confirmed: deoxygaunidinoproclavaminic acid, guanidinoproclavaminic acid, and dihydroclavaminic acid. This work demonstrates the production of β-lactam intermediates of the clavulanic acid pathway by heterologous expression in S. venezuelae YJ028.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, A. G., D. Butterworth, M. Cole, G. Hanscomb, J. D. Hood, C. Reading, and G. N. Rolinson (1976) Naturally-occurring beta-lactamase inhibitors with antibacterial activity. J. Antibiot. 29: 668–669.

    Article  CAS  Google Scholar 

  2. Townsend, C. A. (2002) New reactions in clavulanic acid biosynthesis. Curr. Opin. Chem. Biol. 6: 583–589

    Article  CAS  Google Scholar 

  3. Bachmann, B. O., R. Li, and C. A. Townsend (1998) β-Lactam synthetase: A new biosynthetic enzyme. Proc. Natl. Acad. Sci. 95: 9082–9086.

    Article  CAS  Google Scholar 

  4. Elander, R. P. (2003) Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol. 61: 385–392.

    Article  CAS  Google Scholar 

  5. Li, R., N. Khaleeli, and C. A. Townsend (2000) Expansion of the clavulanic acid gene cluster: Identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol. 182: 4087–4095.

    Article  CAS  Google Scholar 

  6. Mellado, E., L. M. Lorenzana, M. Rodrı́guez-Sáiz, B. Dı́ez, P. Liras, and J. L. Barredo (2002) The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: Genetic organization of the region upstream of the car gene. Microbiol. 148: 1427–1438.

    Article  CAS  Google Scholar 

  7. Jensen, S. E. and A. S. Paradkar (1995) Biosynthesis and molecular genetics of clavulanic acid. Antonie Van Leeuwenhoek 75: 125–133.

    Article  Google Scholar 

  8. Khaleeli, N., R. Li, and C. A. Townsend (1999) Origin of the β-lactam carbons in clavulanic acid from a unusual thiamine pyrophosphate-mediated reaction. J. Am. Chem. Soc. 121: 9223–9224.

    Article  CAS  Google Scholar 

  9. Pérez-Redondo, R., A. Rodríguez-García, J. F. Martín, and P. Liras (1999) Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: Evidence for two different genes in formation of the C3 unit. J. Bacteriol. 181: 6922–6928.

    Google Scholar 

  10. Bachmann, B. O., R. Li, and C. A. Townsend (1998) β-Lactam synthetase: A new biosynthetic enzyme. Proc. Natl. Acad. Sci. 95: 9082–9086.

    Article  CAS  Google Scholar 

  11. Baldwin, J. E., R. M. Adlington, J. S. Bryans, A. O. Bringhen, J. B. Coates, N. P. Crouch, M. D. Lloyd, C. J. Schofield, S. W. Elson, K. H. Baggaley, and R. Cassels (1991) Isolation of dihydroclavaminic acid, an intermediate in the biosynthesis of clavulanic acid. Tetrahedron 47: 4089–4100.

    Article  CAS  Google Scholar 

  12. Marsh, E. N., M. D. Chang, and C. A. Townsend (1992) Two isozymes of clavaminate synthase central to clavulanic acid formation: cloning and sequencing of both genes from Streptomyces clavuligerus. Biochem. 31: 12648–12657.

    Article  CAS  Google Scholar 

  13. Elson, S. W., K. H. Baggaley, M. Davison, M. Fulston, N. H. Nicholson, G. D. Risbridger, and J. W. Tyler (1993) The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway. J. Chem. Soc. Chem. Commun. 15: 1212–1214.

    Article  Google Scholar 

  14. Aidoo, K. A., A. Wong, D. C. Alexander, R. A. Rittammer, and S. E. Jensen (1994) Cloning, sequencing and disruption of a gene from Streptomyces clavuligerus involved in clavulanic acid biosynthesis. Gene 147: 41–46.

    Article  CAS  Google Scholar 

  15. Paradkar, A. (2013) Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J. Antibiot. 66: 411–420.

    Article  CAS  Google Scholar 

  16. Jensen S. E (2012) Biosynthesis of clavam metabolites. Ind. Microbiol. Biotechnol. 39: 1407–1419.

    Article  CAS  Google Scholar 

  17. Álvarez-Álvarez, R., Y. Martínez-Burgo, R. Pérez-Redondo, A. F. Braña, J. F. Martín, and P. Liras (2013) Expression of the endogenous and heterologous clavulanic acid cluster in Streptomyces flavogriseus: Why a silent cluster is sleeping. Appl. Microbiol. Biotechnol. 97: 9451–9463.

    Article  Google Scholar 

  18. Arulanantham, H., N. J. Kershaw, K. S. Hewitson, C. E. Hughes, J. E. Thirkettle, and C. J. Schofield (2006) ORF17 from the clavulanic acid biosynthesis gene cluster catalyzes the ATPdependent formation of N-glycyl-clavaminic acid. J. Biol. Chem. 281: 279–287.

    Article  CAS  Google Scholar 

  19. MacNeil, D. J., J. L. Occi, K. M. Gewain, T. MacNeil, P. H. Gibbons, C. L. Ruby, and S. J. Danis (1992) Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115: 11925.

    Article  Google Scholar 

  20. Sthapit, B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng (2004) Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201–206.

    Article  CAS  Google Scholar 

  21. Bierman, M., R. Logan, K. O’Brien, E. T. Seno, R.N. Rao, and B. E. Schoner (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43–49.

    Article  CAS  Google Scholar 

  22. Sambrook, J. and D. W. Russell (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  23. Keiser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich.

    Google Scholar 

  24. Salowe, S. P., E. N. Marsh, and C. A. Townsend (1990) Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: An unusual oxidative enzyme in natural product biosynthesis. Biochem. 29: 6499–6508.

    Article  CAS  Google Scholar 

  25. Jung, W., A. Han, J. S. Hong, S. R. Park, C. Y. Choi, J. W. Park, and Y. J. Yoon (2007) Bioconversion of 12-, 14-,and 16-membered ring aglycones to glycosylated macrolidesin an engineered strain of Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 76: 1373–1381.

    Article  CAS  Google Scholar 

  26. Xue, Y. and D. H. Sherman (2001) Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab. Eng. 3: 15–26.

    Article  CAS  Google Scholar 

  27. Maharjan, S., J. W. Park, Y. J. Yoon, H. C. Lee, and J. K. Sohng (2010) Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol. Lett. 32: 277–282.

    Article  CAS  Google Scholar 

  28. Pokhrel, A. R., D. Dhakal, A. K. Jha, and J. K. Sohng (2015) Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide. Appl. Microbiol. Biotechnol. 99: 8351–8362.

    Article  CAS  Google Scholar 

  29. Jha, A. K., D. Dhakal, P. T. T. Van, A. R. Pokhrel, T. Yamaguchi, H. J. Jung, Y. J. Yoon, and J. K. Sohng (2015) Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase. Appl. Microbiol. Biotechnol. 99: 3421–3431.

    Article  CAS  Google Scholar 

  30. Chaudhary, A. K., D. Dhakal, and J. K. Sohng (2013) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. BioMed Res. Int. 2013: 15.

    Article  Google Scholar 

  31. Egan, L. A., R. W. Busby, D. Iwata-Reuyl, and C. A. Townsend (1997) Probable role of clavaminic acid as the terminal intermediate in the common pathway to clavulanic acid and the antipodal clavam metabolites. J. Am. Chem. Soc. 119: 2348–2355.

    Article  CAS  Google Scholar 

  32. Saudagar, P. S., S. A. Survase, and R. S. Singhal (2008) Clavulanic acid: A review. Biotechnol. Adv. 26: 335–351.

    Article  CAS  Google Scholar 

  33. Sohng, J. K. and D. Dhakal (2015) Commentary: Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front. Microbiol. 6: 727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, B., Dhakal, D., Darsandhari, S. et al. Heterologous production of clavulanic acid intermediates in Streptomyces venezuelae . Biotechnol Bioproc E 22, 359–365 (2017). https://doi.org/10.1007/s12257-017-0187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0187-z

Keywords

Navigation