Skip to main content
Log in

Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Herboxidiene is a natural product produced by Streptomyces chromofuscus exhibiting herbicidal activity as well as antitumor properties. Using different substrate-flexible cytochrome P450s and glycosyltransferase, different novel derivatives of herboxidiene were generated with structural modifications by hydroxylation or epoxidation or conjugation with a glucose moiety. Moreover, two isomers of herboxidiene containing extra tetrahydrofuran or tetrahydropyran moiety in addition to the existing tetrahydropyran moiety were characterized. The hydroxylated products for both of these compounds were also isolated and characterized from S. chromofuscus PikC harboring pikC from the pikromycin gene cluster of Streptomyces venezuelae and S. chromofuscus EryF harboring eryF from the erythromycin gene cluster of Saccharopolyspora erythraea. The compounds generated were characterized by high-resolution quadrupole-time-of-flight electrospray ionization mass spectrometry (HR-QTOF-ESI/MS) and 1H- and 13C-nuclear magnetic resonance (NMR) analyses. The evaluation of antibacterial activity against three Gram-positive bacteria, Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus, indicated that modification resulted in a transition from anticancer to antibacterial potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banwell M, McLeod M, Premraj R, Simpson G (2000) Total synthesis of herboxidiene, a complex polyketide from Streptomyces species A7847. Pure Appl Chem 72:1631–1634

    Article  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Nagaraj R, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  • Blakemore PR, Kocienski PJ, Morley A, Muir K (1999) A synthesis of herboxidiene. J Chem Soc Perkin Trans 1999:955–968

    Article  Google Scholar 

  • Blanchard S, Thorson JS (2006) Enzymatic tools for engineering natural product glycosylation. Curr Opin Chem Biol 10:263–271

    Article  CAS  PubMed  Google Scholar 

  • Bonnal S, Vigevani L, Valcárcel J (2012) The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11:847–859

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-Omics” based engineering of streptomycetes for secondary metabolite overproduction. Biomed Res Int 2013:968518. doi:10.1155/2013/968518

    Article  PubMed Central  PubMed  Google Scholar 

  • Edmunds AJF, Trueb W, Oppolzer W, Cowley P (1997) Herboxidiene: determination of absolute configuration by degradation and synthetic studies. Tetrahedron 53:2785–2802

    Article  CAS  Google Scholar 

  • Edmunds AJ, Arnold G, Hagmann L, Schaffner R, Furlenmeier H (2000) Synthesis of simplified herboxidiene aromatic hybrids. Bioorg Med Chem Lett 10:1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Effenberger KA, Anderson DD, Bray WM, Prichard BE, Ma N, Adams MS, Ghosh AK, Jurica MS (2014) Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs. J Biol Chem 289:1938–1947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gantt RW, Peltier-Pain P, Thorson JS (2011) Enzymatic methods for glycol (diversification/randomization) of drugs and small molecules. Nat Prod Rep 28:1811–1853

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Vogt A, Forsyth CJ, Koide K (2013) Comparison of splicing factor 3b inhibitors in human cells. ChemBioChem 14:49–52

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Li J (2011) A stereoselective synthesis of (+)-herboxidiene/GEX1A. Org Lett 13:66–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa M, Miura T, Kuzuya K, Inoue A, Won KS, Horinouchi S, Yoshida T, Kunoh T, Koseki K, Mino K, Sasaki R, Yoshida M, Mizukami T (2011) Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem Biol 6:229–233

    Article  CAS  PubMed  Google Scholar 

  • Hunt, I (2014) Chapter 16: Ethers, epoxides and sulfides. Department of Chemistry, University of Calgary. http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch16/ch16-6-1.html. Accessed 21 Nov 2014

  • Isaac BG, Ayer SW, Elliott RC, Stonard RJ (1992) Herboxidiene: a potent phytotoxic polyketide from Streptomyces sp. A7847. J Org Chem 57:7220–7226

    Article  CAS  Google Scholar 

  • Jha AK, Lamichhane J, Sohng JK (2014) Enhancement of herboxidiene production in Streptomyces chromofuscus ATCC 49982. J Microbiol Biotechnol 24:52–58

    Article  CAS  PubMed  Google Scholar 

  • Johnson AW (1999) Invitation to organic chemistry. Jones and Bartlett, Mississauga, p 169

    Google Scholar 

  • Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Mervyn JB, Mark BJ, Keith CF, David HA (2000) Practical Streptomyces genetics. John Innes Foundation Norwich, UK

    Google Scholar 

  • Koguchi Y, Nishio M, Kotera J, Omori K, Ohnuki T, Komatsubara S (1997) Trichostatin A and herboxidiene up-regulate the gene expression of low density lipoprotein receptor. J Antibiot (Tokyo) 50:970–971

    Article  CAS  Google Scholar 

  • Kren V, Martinkova L (2001) Glycosides in medicine: “the role of glycosidic residue in biological activity”. Curr Med Chem 8:1303–1328

    Article  CAS  PubMed  Google Scholar 

  • Lagisetti C, Yermolina MV, Sharma LK, Palacios G, Prigaro BJ, Webb TR (2013) Pre-mRNA splicing-modulatory pharmacophores: the total synthesis of herboxidiene, a pladienolide–herboxidiene hybrid analog and related derivatives. ACS Chem Biol 9:643–648

    Article  PubMed Central  PubMed  Google Scholar 

  • Le TT, Pandey RP, Gurung RB, Dhakal D, Sohng JK (2014) Efficient enzymatic systems for synthesis of novel α-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria. Appl Microbiol Biotechnol 98:8527–8538

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Basnet DB, Hong JSJ, Jung WS, Choi CY, Lee HC, Sohng JK, Ryu KG, Kim DJ, Ahn JS, Kim BS, Oh HC, Sherman DH, Yoon YJ (2005) Structural diversification of macrolactones by substrate‐flexible cytochrome P450 monooxygenases. Adv Synth Catal 347:1369–1378

    Article  CAS  Google Scholar 

  • Menzella HG, Reeves CD (2007) Combinatorial biosynthesis for drug development. Curr Opin Microbiol 10:238–245

    Article  CAS  PubMed  Google Scholar 

  • Murray TJ, Forsyth CJ (2008) Total synthesis of GEX1A. Org Lett 10:3429–3431

    Article  CAS  PubMed  Google Scholar 

  • Pandey RP, Parajuli P, Koirala N, Park JW, Sohng JK (2013) Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl Environ Microbiol 79:6833–6838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey RP, Gurung RB, Parajuli P, Koirala N, Tuoi LT, Sohng JK (2014) Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr Res 393:26–31

    Article  CAS  PubMed  Google Scholar 

  • Park SR, Park JW, Jung WS, Han AR, Ban YH, Kim EJ, Yoon YJ (2008) Heterologous production of epothilones B and D in Streptomyces venezuelae. Appl Microbiol Biotechnol 81:109–117

    Article  CAS  PubMed  Google Scholar 

  • Pellicena M, Krämer K, Romea P, Urpi F (2011) Total synthesis of (+)-herboxidiene from two chiral lactate-derived ketones. Org Lett 13:5350–5353

    Article  CAS  PubMed  Google Scholar 

  • Piggott AM, Karuso P (2004) Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb Chem High Throughput Screen 7:607–630

    CAS  PubMed  Google Scholar 

  • Podust LM, Sherman DH (2012) Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 29:1251–1266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Premraj R, McLeod MD, Simpson GW, Banwell MG (2012) A total synthesis of herboxidiene methyl ester. Heterocycles 85:2949–2976

    Article  CAS  Google Scholar 

  • Sakai Y, Tsujita T, Akiyama T, Yoshida T, Mizukami T, Akinaga S, Horinouchi S, Yoshida M, Yoshida T (2002) GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp II. The effects on cell cycle progression and gene expression. J Antibiot (Tokyo) 55:863–872

    Article  CAS  Google Scholar 

  • Salas JA, Méndez C (2009) Indolocarbazole antitumour compounds by combinatorial biosynthesis. Curr Opin Chem Biol 13:152–160

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci U S A 102:461–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shao L, Zi J, Zeng J, Zhan J (2012) Identification of the herboxidiene biosynthetic gene cluster in Streptomyces chromofuscus ATCC 49982. Appl Environ Microbiol 78:2034–2038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simkhada D, Lee HC, Sohng JK (2010) Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol Bioeng 107:154–162

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Phillips GN, Thorson JS (2012) The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep 29:1201–1237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sthapit B, Oh TJ, Lamichhane R, Liou K, Lee HC, Kim CG, Sohng JK (2004) Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett 566:201–206

    Article  CAS  PubMed  Google Scholar 

  • Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R (1992) Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847-taxonomy, fermentation isolation, physicochemical and biological properties. J Antibiot (Tokyo) 45:914–921

    Article  Google Scholar 

  • Wohlert SE, Blanco G, Lombo F, Fernandez E, Brana AF, Reich S, Udvarnoki G, Mendez C, Decker H, Frevert J, Salas JA, Rohr J (1998) Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by the elm genes in cosmid 16 F4 and which shows a broad sugar substrate specificity. J Am Chem Soc 120:10596–10601

    Article  CAS  Google Scholar 

  • Wong FT, Khosla C (2012) Combinatorial biosynthesis of polyketides-a perspective. Curr Opin Chem Biol 16:117–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu CZ, Jang JH, Woo M, Ahn JS, Kim JS, Hong YS (2012) Enzymatic glycosylation of nonbenzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl Environ Microbiol 78:7680–7686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav JS, Reddy GM, Anjum SR, Reddy BV (2014) A formal synthesis of herboxidiene/GEX1A. Eur J Org Chem 2014:4389–4397

    Article  CAS  Google Scholar 

  • Yoon YJ, Beck BJ, Kim BS, Kang HY, Reynolds KA, Sherman DH (2002) Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem Biol 9:203–214

    Article  CAS  PubMed  Google Scholar 

  • Yu JM, Kishi Y, Littlefield BA (2005) Discovery of E7389, a fully synthetic macrocyclic ketone analog of halichondrin B. In: Cragg GM, Kingston DG, Newman DJ (eds.) Anticancer agents from natural products. CRC press, p. 329. doi:10.1201/9781420039658.ch13

  • Yu D, Xu F, Zhang S, Shao L, Wang S, Zhan J (2013) Characterization of a methyltransferase involved in herboxidiene biosynthesis. Bioorg Med Chem Lett 23:5667–5670

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Xu F, Shao L, Zhan J (2014) A specific cytochrome P450 hydroxylase in herboxidiene biosynthesis. Bioorg Med Chem Lett 24:4511–4514

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Panek JS (2007) Total synthesis of herboxidiene/GEX 1A. Org Lett 9:3141–3143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2014R1A2A2A01002875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3.69 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.K., Dhakal, D., Van, P.T.T. et al. Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase. Appl Microbiol Biotechnol 99, 3421–3431 (2015). https://doi.org/10.1007/s00253-015-6431-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6431-6

Keywords

Navigation