Skip to main content
Log in

Generation of a monoclonal antibody that has reduced binding activity to VX-inactivated butyrylcholinesterase (BuChE) compared to BuChE by phage display

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Organophosphate (OP) nerve agents are known as the most toxic chemical warfare agents that act by inhibiting the enzyme acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because BuChE is present at a level of about 3,900 times higher than AChE in plasma, most OP agents first react with BuChE in plasma, suggesting that OP-inactivated BuChE (OP-iBuChE) may act as a biomarker of OP exposure. In this study, we generated an anti-BuChE monoclonal antibody (mAb) that has reduced binding activity to VX-inactivated BuChE compared to native BuChE by phage display. We performed subtractive biopanning of a synthetic human Fab library against native BuChE and soman-iBuChE or VX-iBuChE. As the results, we isolated four Fab clones that showed differential binding activities to VX-iBuChE and native BuChE in ELISAs. To confirm the antigen-binding specificity of the selected clones, the Fabs were converted to IgG1s, and the IgG antibodies were expressed in HEK293F cells and purified. One of them (A2) showed approximately 30% reduced binding activity to VX-iBuChE compared to BuChE in a dose-dependent manner, whereas the other three antibodies showed almost the same binding activities to VX-iBuChE and BuChE. In addition, the A2 antibody did not show reduced binding activity to sarin-iBuChE or soman-iBuChE compared to native BuChE. The results indicate that A2 antibody shows reduced binding activity only to VX-iBuChE. A2 antibody may be applied to specific diagnosis of VX exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terry, A. V. Jr (2012) Functional consequences of repeated organophosphate exposure: Potential non-cholinergic mechanisms. Pharmacol. Ther. 134: 355–365.

    Article  CAS  Google Scholar 

  2. Casida, J. E. and G. B. Quistad (2005) Serine hydrolase targets of organophosphorus toxicants. Chem. Biol. Interact. 157-158: 277–283.

    Article  CAS  Google Scholar 

  3. Steiner, W. E., C. S. Harden, F. Hong, S. J. Klopsch, H. H. Jr Hill, and V. M. McHugh (2006) Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 17: 241–245.

    Article  CAS  Google Scholar 

  4. Balali-Mood, M. and K. Balali-Mood (2008) Neurotoxic disorders of organophosphorus compounds and their managements. Arch. Iran Med. 11: 65–89.

    CAS  Google Scholar 

  5. Leikin, J. B., R. G. Thomas, F. G. Walter, R. Klein, and H. W. Meislin (2002) A review of nerve agent exposure for the critical care physician. Crit. Care Med. 30: 2346–2354.

    Article  Google Scholar 

  6. Newmark, J. (2007) Nerve agents. Neurol. 13: 20–32.

    Article  Google Scholar 

  7. Moshiri, M., E. Darchini-Maragheh, and M. Balali-Mood (2012) Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru 20:81.

    Article  CAS  Google Scholar 

  8. Sidell, F. R. and J. Borak (1992) Chemical warfare agents: II. Nerve agents. Ann. Emerg. Med. 21: 865–871.

    Article  CAS  Google Scholar 

  9. Cao, C. J., R. J. Mioduszewski, D. E. Menking, J. J. Valdes, E. J. Katz, M. E. Elderfrawi, and A. T. Eldefrawi (1999) Cytotoxicity of organophosphate anticholinesterases. In Vitro Cell Dev. Biol. Anim. 35: 493–500.

    Article  CAS  Google Scholar 

  10. Munro, N. (1994) Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: Implications for public protection. Environ. Health Perspect. 102: 18–38.

    Article  CAS  Google Scholar 

  11. Black, R. M. and R. W. Read (2013) Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 87: 421–437.

    Article  CAS  Google Scholar 

  12. Lockridge, O. (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 148: 34–46.

    Article  CAS  Google Scholar 

  13. Manoharan, I., R. Boopathy, S. Darvesh, and O. Lockridge (2007) A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin. Chim. Acta 378: 128–135.

    Article  CAS  Google Scholar 

  14. Jokanovic, M. (2009) Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 190: 107–115.

    Article  CAS  Google Scholar 

  15. Nordgren, I., G. Lundgre, G. Puu, and B. Holmstedt (1984) Stereoselectivity of enzymes involved in toxicity and detoxification of soman. Arch. Toxicol. 55: 70–75.

    Article  CAS  Google Scholar 

  16. Worek, F., U. Mast, D. Kiderlen, C. Diepold, and P. Eyer (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta 288: 73–90.

    Article  CAS  Google Scholar 

  17. Shih, T., R. K. Kan, and J. H. McDonough (2005) In vivo cholinesterase inhibitory specificity of organophosphorus nerve agents. Chem. Biol. Interact. 157-158: 293–303.

    Article  CAS  Google Scholar 

  18. Adams, T. K., B. R. Capacio, J. R. Smith, C. E. Whalley, and W. D. Korte (2004) The application of the fluoride reactivation process to the detection of sarin and soman nerve agent exposures in biological samples. Drug Chem. Toxicol. 27: 77–91.

    Article  CAS  Google Scholar 

  19. Sliwkowski, M. X. and I. Mellman (2013) Antibody therapeutics in cancer. Sci. 341: 1192–1198.

    Article  CAS  Google Scholar 

  20. Buss, N. A., S. J. Henderson, M. McFarlane, J. M. Shenton, and L. de Haan (2012) Monoclonal antibody therapeutics: history and future. Curr. Opin. Pharmacol. 12: 615–622.

    Article  CAS  Google Scholar 

  21. Waldmann, T. A. (1991) Monoclonal antibodies in diagnosis and therapy. Sci. 252; 1657–1662.

    Article  CAS  Google Scholar 

  22. Winter, G., A. D. Griffiths, R. E. Hawkins, and H. R. Hoogenboom (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

    Article  CAS  Google Scholar 

  23. Lerner, R. A., A. S. Kang, J. D. Bain, D. R. Burton, and C. F. Baras (1992) Antibodies without immunization. Sci. 258: 1313–1314.

    Article  CAS  Google Scholar 

  24. Ellman, G. L., K. D. Coutney, V. Andres, and R. M. Featherstone (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95.

    Article  CAS  Google Scholar 

  25. Dingova, D., J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska (2014) Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay. Anal. Biochem. 462: 67–75.

    Article  CAS  Google Scholar 

  26. Kristensen, P. and G. Winter (1998) Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des. 3: 321–328.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Won Kim.

Additional information

First two author’s contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JY., Kim, DH., Kim, S. et al. Generation of a monoclonal antibody that has reduced binding activity to VX-inactivated butyrylcholinesterase (BuChE) compared to BuChE by phage display. Biotechnol Bioproc E 22, 114–119 (2017). https://doi.org/10.1007/s12257-017-0110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0110-7

Keywords

Navigation