Skip to main content
Log in

Cytotoxicity of organophosphate anticholinesterases

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Organophosphate (OP) anticholinesterases were found to modulate metabolic activities of human neuroblastoma cells and hepatocytes, which was detectable by the Cytosensor® microphysiometer. The nerve gas ethyl-S-2-diisopropylaminoethyl methylphosphorothiolate (VX), at 10 µM, produced significant reduction in cell metabolism within 2 min, as measured by changes in the acidification rate of the medium. The reduction was dose-and time-dependent and irreversible after 4 h of exposure. Two alkaline degradation products of VX produced no cytotoxicity. Exposure for 24 h to 3 µM VX caused 36% and 94% irreversible loss of metabolism in hepatocytes and neuroblastoma cells, respectively. The insecticides parathion and chlorpyrifos stimulated hepatocyte metabolism but inhibited neuroblastoma cells. Their oxons were more active. Exposure of neuroblastoma cells for 4 h to VX, parathion, paraoxon, diisopropylfluorophosphate or chlorpyrifos gave an LC50 of 65, 775, 640, 340, or 672 µM, respectively, whereas 24 h gave an LC50 of 0.7, 3.7, 2.5, 29, and 31 µM, respectively. Preincubation of hepatocytes with phenobarbital enhanced their response to parathion and VX due to metabolic bioactivation. Atropine partially blocked the effects of VX and paraoxon on both cell types, which suggests the involvement of a muscarinic receptor as the target for cytotoxicity. There was no correlation between OP in vivo neurotoxicity and in vitro cytotoxicity. It is suggested that the former results from their cholinesterase inhibition, while the latter results from action on different targets and requires much higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah, E. A. M.; Jett, D. A.; Eldefrawi, M. E.; Eldefrawi, A. T. Differential effects of paraoxon on the M3 muscarinic receptor and its system in rat submaxillary gland cells. J. Biochem. Toxicol. 7:125–132; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bakry, N. M.; El-Rashidy, A. H.; Eldefrawi, A. T.; Eldefrawi, M. E. Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholine receptors. J. Biochem. Toxicol. 3:235–259; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. J.; Wood, M. D.; Caldwell, M. C.; Bristow, D. R. Measurement of GABAA receptor function in rat cultured cerebellar granule cells by the cytosensor microphysiometer. Br. J. Pharmacol. 121:71–76; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, J. D.; Farquharson, D. A.; Hoskin, F. C. G. Soman and receptor-ligand interaction in electrophorus electroplaques. Biochem. Pharmacol. 26:337–343; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Busa, W. B.; Nuccitelli, R. Metabolic regulation via intracellular pH. Am. J. Physiol. 246:R409–438; 1984.

    PubMed  CAS  Google Scholar 

  • Cao, C.-J.; Eldefrawi, A. T.; Eldefrawi, M. E. ATP-regulated neuronal catecholamine uptake: a new mechanism. Life Sci. 47:655–667; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cao, C.-J.; Eldefrawi, M. E.; Eldefrawi, A. T.; Burnett, J. W.; Mioduszewski, R. J.; Menking, D. E.; Valdes, J. J. Toxicity of sea nettle toxin to human liver cells and the protective effects of phosphorylating and alkylating agents. Toxicon 36:269–281; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cao, C-J.; Mioduszewski, R. J.; Menking, D. E.; Valdes, J. J.; Cortes, V. I.; Eldefrawi, M. E.; Eldefrawi, A. T. Validation of the Cytosensor for in vitro cytotoxicity studies. Toxicology In Vitro 11:285–293; 1997.

    Article  CAS  Google Scholar 

  • Chambers, J. E.; Carr, R. L. Inhibition patterns of brain acetylcholinesterase and hepatic and plasma aliesterases following exposures to three phosphorothionate insecticides and their oxons in rats. Fund. Appl. Toxicol. 21:111–119; 1993.

    Article  CAS  Google Scholar 

  • Ekwall, B.; Bondesson, I.; Castell, J. V.; Gomez-Lechon, M. J.; Hellberg, S.; Hogberg, J.; Jover, R.; Ponsoda, X.; Romert, L.; Stenberg, K.; Walum, E. Cytotoxicity evaluation of the first ten MEIC chemicals: acute lethal toxicity in man predicted by cytotoxicity in five cellular assays and by oral LD50 tests in rodents. ATLA 17:83–100; 1989.

    Google Scholar 

  • Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Featherstone, R. M. A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95; 1961.

    Article  PubMed  CAS  Google Scholar 

  • Huff, R. A.; Abou-Donia, M. B. In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase. Neurotoxicology (Little Rock) 16:281–290; 1995.

    CAS  Google Scholar 

  • Jett, D. A.; Abdallah, E. A. M.; El-Fakhany, E. E.; Eldefrawi, M. E.; Eldefrawi, A. T. High affinity activation by paraoxon of a muscarinic receptor subtype in rat brain striatum. Pestic. Biochem. Physiol. 39:149–157; 1991.

    Article  CAS  Google Scholar 

  • Katz, E. J.; Cortes, V. I.; Eldefrawi, M. E.; Eldefrawi, A. T. Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol. Appl. Pharmacol. 146:227–236; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ko, Y.; Park, S. S.; Song, B. J.; Patten, C.; Tan, Y.; Hah, Y. C.; Yang, C. S.; Gelboin, H. V. Monoclonal antibodies to ethanol-induced rat liver cytochrome P-450 that metabolizes aniline and nitrosamines. Cancer Res. 47:3101–3109; 1987.

    PubMed  CAS  Google Scholar 

  • McConnell, H. M.; Owicki, J. C.; Parce, J. W.; Miller, P. L.; Baxter, G. T.; Wada, H. G.; Pitchford, S. The Cytosensor microphysiometer: biological applications of silicon technology. Science (Wash DC) 257:1906–1912; 1992.

    Article  CAS  Google Scholar 

  • Miranda, C. L.; Collodi, P.; Zhao, X.; Barnes, D. W.; Buhler, D. R. Regulation of cytochrome P450 expression in a novel liver cell line from zebra fish (Brachydanio rerio). Arch. Biochem. Biophys. 305:320–327; 1993.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. D. Insecticides: action and metabolism. New York: Academic Press; 1967:332.

    Google Scholar 

  • Owicki, J. C.; Parce, J. W. Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosensors and Bioelectronics 7:255–272; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Owicki, J. C.; Parce, J. W.; Kercso, K. M.; Sigal, G. B.; Muir, V. C.; Venter, J. C.; Fraser, C. M.; McConnell, H. M. Continuous monitoring of receptor-mediated changes in the metabolic rates of living cells. Proc. Natl. Acad. Sci. USA 87:4004–4011; 1990.

    Article  Google Scholar 

  • Pelster, B.; Niederstratter, H. pH-dependent proton secretion in cultured swim bladder gas gland cells. Am. J. Physiol. 42:1719–1725; 1997.

    Google Scholar 

  • Riddell, R. J.; Panacer, D. S.; Wilde, S. M.; Clothier, R. H.; Balls, M. The importance of exposure period and cell type in in vitro cytotoxicity tests. ATLA 14:86–92; 1986.

    CAS  Google Scholar 

  • Sancho, E.; Fernando, M. D.; Andrew, E. Sublethal effects of an organophosphate insecticide on the European eel, Anguilla. Ecotoxicol. Environ. Saf. 36:57–65; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Silveira, C. L. P.; Eldefrawi, A. T.; Eldefrawi, M. E. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anti-cholinesterases. Toxicol. Appl. Pharmacol. 103:474–481; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Song, X.; Violin, J. D.; Seidler, F. J.; Slotkin, T. A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol. Appl. Pharmacol. 151:182–191; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. L. Cytotoxic effects of anticholinesterase compounds on cultured chicken monocytes. US Chemical Warfare Lab Report, No. 2152; 1957.

  • Taylor, P. Anlicholinesterase Agents. In: Gilman, A. G.; Wall, T.; Nies, A.; Taylor, P., eds. The pharmacological basis of therapeutics. New York: Pergamon Press; 1995:131–149.

    Google Scholar 

  • Veronesi, B.; Ehrich, M. Differential cytotoxic sensitivity in mouse and human cell line exposed to organophosphate insecticides. Toxicol. Appl. Pharmacol. 120:240–246; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Wada, H. G.; Owicki, J. C., Parce, J. W. Cells on silicon: Bioassays with microphysiometer. Clin. Chem. 37:600–601; 1991

    Google Scholar 

  • Ward, W. R.; Ferris, D. J.; Tilson, H. A.; Mundy, W. R. Correlation of the anticholinesterase activity of a series of organophosphates with their ability to compete with agonist binding to muscarinic receptors. Toxicol. Appl. Pharmacol. 122:300–307; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ward, T. R.; Mundy, W. R. Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res. 39:49–55; 1996.

    CAS  Google Scholar 

  • Whitney, K. D.; Seidler, F. J.; Slotkin, T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol. Appl. Pharmacol. 134:53–62; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y.-C.; Baker, J. A.; Ward, J. R. Decontamination of chemical warfare agents. Chem. Rev. 92:1729–1743; 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C.J., Mioduszewski, R.J., Menking, D.E. et al. Cytotoxicity of organophosphate anticholinesterases. In Vitro Cell.Dev.Biol.-Animal 35, 493–500 (1999). https://doi.org/10.1007/s11626-999-0059-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0059-8

Key words

Navigation