Skip to main content
Log in

Enhancement effects of cationic contaminants from bacteria on cake layer formation and biofouling on an RO membrane

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The model cationic molecule prodigiosin interacted with a polyamide/polysulfone composite reverse osmosis (RO) membrane, resulting in a reduction of the membrane permeation rate. Prodigiosin is an antibacterial agent produced by Serratia marcescens that is frequently isolated from activated sludge of domestic or industrial wastewater. Such molecules respectively secreted or leaked from live or dead cells are thought to affect membrane biofouling. In this study, a cell suspension containing prodigiosin-producing S. marcescens AS-1 wild-type or the non-producing AS-1ΔspnI strain was fed to the thin RO membrane to determine the occlusion ratio on the membrane. Cationic prodigiosin enhanced membrane biofouling by clogging the pores and enhanced the accumulation of the cake layer. The effects remarkably recovered the occlusion ratio after removing the cake layer by feeding with water. After temporary pressure relief, the occlusion ratios for AS-1 and AS-1ΔspnI were recovered to stable levels from approximately 70 to 49% and 23%, respectively. Zetapotential analysis supported the neutralization effects leading to the accumulation of bacterial cells under applied high pressure for RO membrane permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, F., S.-R. Chae, A. Drews, M. Kraume, H. S. Shin, and F. Yang (2009) Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 43: 1489–1512.

    Article  CAS  Google Scholar 

  2. Tam, L. S., T. W. Tang, G. N. Lau, K. R. Sharma, and G. H. Chen (2006) A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination 202: 106–113.

    Article  Google Scholar 

  3. Tang, C. Y., T. H. Chong, and A. G. Fane (2011) Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 164: 126–143.

    Article  CAS  Google Scholar 

  4. Chang, I. S., S. O. Bag, and C. H. Lee (2001) Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Proc. Biochem. 36: 855–860.

    Article  CAS  Google Scholar 

  5. Maqbool, T., V. L. Quang, J. Cho, and J. Hur (2016) Characterizing fluorescent dissolved organic matter in a membrane bioreactor via excitation–emission matrix combined with parallel factor analysis. Biores. Technol. 209: 31–39.

    Article  CAS  Google Scholar 

  6. Choi, J., E. S. Kim, and Y. Ahn (2017) Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor. Biores. Technol. 227: 133–141.

    Article  CAS  Google Scholar 

  7. Hörsch, P., A. Gorenflo, C. Fuder, A. Deleage, and F. H. Frimmel (2005) Biofouling of ultra-and nanofiltration membranes for drinking water treatment characterized by fluorescence in situ hybridization (FISH). Desalination 172: 41–52.

    Article  Google Scholar 

  8. Barnes, R. J., R. R. Bandi, F. Chua, J. H. Low, T. Aung, N. Barraud, A. G. Fane, S. Kjelleberg, and S. A. Rice (2014) The roles of Pseudomonas aeruginosa extracellular polysaccharides in biofouling of reverse osmosis membranes and nitric oxide induced dispersal. J. Membrane Sci. 466: 161–172.

    Article  CAS  Google Scholar 

  9. Pasmore, M., P. Todd, S. Smith, D. Baker, J. Silverstein, D. Coons, and C. N. Bowman (2001) Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J. Membrane Sci. 194: 15–32.

    Article  CAS  Google Scholar 

  10. Chung, Y. C., Y. -P. Su, C. -C. Chen, G. Jia, H. -L. Wang, J. C. G. Wu, and J. -G. Lin (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 25: 932–936.

    CAS  Google Scholar 

  11. Park, H., S. G. Lee, T. K. Kim, S. J. Han, and J. H. Yim (2012) Selection of extraction solvent and temperature effect on stability of the algicidal agent prodigiosin. Biotechnol. Bioproc. Eng. 17: 1232–1237.

    Article  CAS  Google Scholar 

  12. Berger, M., A. Neumann, S. Schulz, M. Simon, and T. Brinkhoff (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J. Bacteriol. 193: 6576–6585.

    Article  CAS  Google Scholar 

  13. Nasuno, E., Y. Abe, K. Iimura, M. Ohno, T. Okuda, W. Nishijima, and N. Kato (2017) Isolation of biofilm-forming bacteria from the secondary effluent of wastewater treatment plants and its ability to produce N-acylhomoserine lactone as quorum sensing signal. Appl. Mech. Mater. 863: 135–140.

    Article  Google Scholar 

  14. Ohno, M., C. Manalo, L. Rossetto, T. Okuda, S. Nakai, and W. Nishijima (2016) Effect of coexisting metal ions on the degradation of polyamide reverse osmosis membrane by hypochlorite treatment. Desalination 381: 126–134.

    Article  CAS  Google Scholar 

  15. Morohoshi, T., T. Shiono, K. Takidouchi, M. Kato, N. Kato, J. Kato, and T. Ikeda (2007) Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Appl. Environ. Microbiol. 73: 6339–6344.

    Article  CAS  Google Scholar 

  16. Slater, H., M. Crow, L. Everson, and G. P. C. Salmond (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. 47: 303–320.

    Article  CAS  Google Scholar 

  17. Wang, Z., Z. Wu, X. Yin, and L. Tian (2008) Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization. J. Membr. Sci. 325: 238–244.

    Article  CAS  Google Scholar 

  18. Chu, H. P. and X. -Y. Li (2005) Membrane fouling in a membrane bioreactor (MBR): Sludge cake formation and fouling characteristics. Biotech. Bioeng. 90: 323–331.

    Article  CAS  Google Scholar 

  19. Ma, D., B. Gao, S. Sun, Y. Wang, Q. Yue, and Q. Li (2013) Effects of dissolved organic matter size fractions on trihalomethanes formation in MBR effluents during chlorine disinfection. Biores. Technol. 136: 535–541.

    Article  CAS  Google Scholar 

  20. Kim, H. C. and B. A. Dempsey (2013) Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. J. Membrane Sci. 428: 190–197.

    Article  CAS  Google Scholar 

  21. Geyik, A. G., B. Kiliç, and F. Çeçen (2016) Extracellular polymeric substances (EPS) and surface properties of activated sludges: Effect of organic carbon sources. Environ. Sci. Pollut. Res. 23: 1653–1663.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Nasuno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamanouchi, S., Nasuno, E., Ohno, M. et al. Enhancement effects of cationic contaminants from bacteria on cake layer formation and biofouling on an RO membrane. Biotechnol Bioproc E 22, 281–286 (2017). https://doi.org/10.1007/s12257-017-0093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0093-4

Keywords

Navigation