Skip to main content
Log in

Production and characterization of cellulase from E. coli EgRK2 recombinant based oil palm empty fruit bunch

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 41.3 ~ 46.5% (w/w) of cellulose. This research examined the production of cellulase by the E. coli EgRK2 recombinant strain using an OPEFB substrate. The production of the enzyme was initially examined to identify optimum growth conditions, by observing the growth and activity of E. coli EgRK2 compared to its wild type. Our results showed that the optimum production time, pH and temperature of the recombinant growth and cellulase activity were achieved at 24 h, and at 7 and 40°C, respectively. Using these optimum conditions, the enzyme was produced, and experiments were carried out to examine the enzyme characteristics, produced from both strains, on hydrolysis of cellulose from OPEFB. Our results showed that the activity of the enzyme produced by the recombinant almost doubled compared to that of the wild type, although the optimum pH for both strains was pH 6. Higher activity was achieved by the recombinant compared to the wild type strain, and values were 1.905 and 1.366 U/mL, respectively. The optimum temperature for hydrolysis by cellulase occurred at 50°C for Bacillus sp. RK2, and 60°C for Bacillus sp. EgRK2. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) for OPEFB degradation by E. coli EgRK2 were 0.26% and 1.750 μmol/mL/sec, which were significantly better values than those of the wild type. Control experiments for the degradation test using CMC also showed a better Vmax value for E. coli EgRK2 compared to the wild type, which is 2.543 and 1.605 μmol/mL/sec, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fogler, H. S. (2006) Elements of Chemical Reaction Engineering. 4th ed., pp. 394–418. Prentice-Hall International, Inc., New Jersey, USA.

    Google Scholar 

  2. Transparency Market Research. http://transparencymarketresearch.com

  3. State Ministry of Research and Technology, Enzymes industrialization in the State. http://www.ristek.go.id.

  4. Noratiqaha, K., M. S. Madihaha, B. Siti Aisyaha, M. Shaza Evaa, A. A. Surainic, and K. Kamarulzamand (2013) Statistical optimization of enzymatic degradation process for oil palm empty fruit bunch (OPEFB) in rotary drum bioreactor using crude cellulase produced from Aspergillus niger EFB1. Biochem. Eng. J. 75: 8–20.

    Article  Google Scholar 

  5. Romero, M., J. Aguado, L. González, and M. Ladero (1999) Cellulase production by Neurospora crassa on wheat straw. Enz. Microb. Technol. 25: 244–250.

    Article  CAS  Google Scholar 

  6. Wen, S. C. Z. and W. Liao (2005) Production of cellulase/β-glucosidase by the mixed fungi culture of Trichoderma reesei and Aspergillus phoenicis on dairy manure. Proc. Biochem. 40: 3087–3094.

    Article  CAS  Google Scholar 

  7. Alam, M. Z., A. A. Mamun, I. Y. Qudsieh, S. A. Muyibi, H. M. Salleh, and N. M. Omar (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J. 46: 61–64.

    Article  CAS  Google Scholar 

  8. Wang, Z., H. X. Ong, and A. Geng (2012) Cellulase production and oil palm empty fruit bunch saccharification by a new isolate of Trichoderma koningii D-64. Proc. Biochem. 47: 1564–1571.

    Article  CAS  Google Scholar 

  9. Rosyida, V. T., A. W. Indrianingsih, R. Maryana, and S. K. Wahono (2015) Effect of temperature and fermentation time of crude cellulase production by Trichoderma Reesei on straw substrate. Energy Procedia. 65: 368–371.

    Article  CAS  Google Scholar 

  10. Maki, M., K. T. Leung, and W. Qin (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5: 500–516.

    Article  CAS  Google Scholar 

  11. Gozan, M., M. Edita, D. H. Park, and P. Bambang (2011) Cellulase Immobilization using reversible soluble-insoluble polymer. Int. J. Pharma Bio. Sci. 4: B-190-B-197.

  12. Shinde, A. A., F. K. Shaikh, M. V. Padul, and M. S. Kachole (2012) Bacillus subtillis RTSBA6 6.00, a new strain isolated from gut of Helicoverpa armigera (Lepidoptera: Noctuidae) produces chymotrypsin-like proteases. Saudi J. Biol. Sci. 19: 317–323.

    Article  CAS  Google Scholar 

  13. Vijayaraghavan, P., S. Lazarus, and S. G. P. Vincent (2014) Dehairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties. Saudi J. Biol. Sci. 21: 27–34.

    Article  CAS  Google Scholar 

  14. Kumar, N. P., T. H. Swapna, M. Y. Khan, G. Reddy, and B. Hameeda (2015) Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes. Saudi J. Biol. Sci. DOI: 10.1016/j.sjbs.2015.09.014.

    Google Scholar 

  15. Fan, B., X. H. Chen, A. Budiharjo, W. Bleiss, J. Vater, and R. Borriss (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151: 303–311.

    Article  CAS  Google Scholar 

  16. Ma, Y., H. Yang, X. Chen, B. Sun, G. Du, Z. Zhou, J. Song, Y. Fan, and W. Shen (2015) Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline a-amylase as a case study. Protein Exp. Purification. 114: 82–88.

    Article  CAS  Google Scholar 

  17. Mou, C., L. Zhu, X. Xing, J. Lin, and Q. Yang (2016) Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antiviral Res. 131: 74–84.

    Article  CAS  Google Scholar 

  18. Bai, S., M. Ravi, D. J. Mukesh, P. Balashanmugam, and M. D. Bala (2012) Cellulase production by Bacillus subtilis isolated from Cow Dung. Arch. Appl. Sci. Res. 4: 269–279.

    CAS  Google Scholar 

  19. Verma, V., A. Verma, and A. Kushwaha (2012) Isolation and production of cellulase enzyme from bacteria isolated from agricultural fields in district Hardoi, Uttar Pradesh, India. Adv. Appl. Sci. Res. 3: 171–174.

    CAS  Google Scholar 

  20. Shabeb, M. S. A., M. A. M. Younis, F. F. Hezayen, and M. A. Nour-Eldein (2010) Production of cellulase in low-cost by Bacillus subtilis KO strain. World Appl. Sci. J. 8: 35–42.

    CAS  Google Scholar 

  21. Christy, P. M., L. R. Gopinath, and D. Divya (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Ren. Sustain. Energy Rev. 34: 167–173.

    Article  Google Scholar 

  22. Gozan, M., A. Marssada, and S. Setyahadi (2013) Variation of C/ N ratio and fermentation time in response surface methodology for cellulase production from Bacillus sp. BPPT CC RK2. Int. J. Pharm. Bio. Sci. 4: 1063–1070.

    CAS  Google Scholar 

  23. Ray, A. K., A. Bairagi, K. Sarkar Ghosh, and S. K. Sen (2007) Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol. Piscat. 37: 47–53.

    Article  Google Scholar 

  24. Immanuel, G., R. Dhanusha, P. Prema, A. Palavesam, M. B. Division, and K. District (2006) Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Environ. Sci. Technol. 3: 25–34.

    Article  CAS  Google Scholar 

  25. Sethi, S., A. Datta, B. L. Gupta, and S. Gupta (2013) Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. 2013: 985685.

    Article  Google Scholar 

  26. Ariffin, H., N. Abdullah, M. S. Kalsom, Y. Shirai, and M. A. Hassan (2006) Production and characterisation of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 3: 47–53.

    Google Scholar 

  27. Umi Kalsom, M. S., A. B. Ariff, and H. S. Zulkifli (1997) The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by chaetomium globosum kunze. Bioresour. Technol. 62: 1–9.

    Article  CAS  Google Scholar 

  28. Khan, M. M. H., S. Ali, A. F. Razi and M. Z. Alzam (2007) Use of fungi for the bioconversion of rice straw into cellulose enzyme. J. Env. Sci. Health Part B. 42: 381–386.

    Article  CAS  Google Scholar 

  29. Li, C., Z. Yang, R.H.C. Zhang, D. Zhang, S. Chen, and L. Ma (2013) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J. Biotechnol. 168: 470–477.

    Article  CAS  Google Scholar 

  30. Kotchoni, O. D., O. O. Shonukan, and W. E. Gachomo (2003) Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression. Afr. J. Biotechnol. 2: 140–146.

    Article  CAS  Google Scholar 

  31. Fogarty, W. M. and C. T. Kelly (2012) Microbial Enzymes and Biotechnology. Springer Science & Business Media.

    Google Scholar 

  32. Beg, Q. K. and R. Gupta (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enz.Microb. Technol. 32: 294–304.

    Article  CAS  Google Scholar 

  33. Iqbal, H. M. N., I. Ahmed, M. A. Zia, and M. Irfan (2011) Purification and characterization of the kinetic parameters of cellulose produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv. Biosci. Biotechnol. 2: 149–156.

    Article  CAS  Google Scholar 

  34. Fadel, M. (2000) Production physiology of cellulases and β-glucosidase enzymes of A. niger grown under solid state fermentation conditions. Online J. Biol. Sci. 1: 401–411.

    Google Scholar 

  35. Ang, S. K., E. M. Shaza, Y. A. Adibah, A. A. Suraini, and M. S. Madihah (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Proc. Biochem. 48: 1293–1302.

    Article  CAS  Google Scholar 

  36. Pinto, M. F. and P. M. Martins (2016) In search of lost time constants and of non-Michaelis–Menten parameters. Proceedings of the Beilstein ESCEC Symposium. Perspectives in Science. December9.

    Google Scholar 

  37. Ekperigin, M. M. (2007) Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr. J. Biotechnol. 6: 28–33.

    CAS  Google Scholar 

  38. Chen, H., Q. He, and L. Liu (2011) Cellulase production from the corn stover fraction based on the organ and tissue. Biotechnol. Bioproc. Eng. 16: 867–874.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misri Gozan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amraini, S.Z., Ariyani, L.P., Hermansyah, H. et al. Production and characterization of cellulase from E. coli EgRK2 recombinant based oil palm empty fruit bunch. Biotechnol Bioproc E 22, 287–295 (2017). https://doi.org/10.1007/s12257-017-0034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0034-2

Keywords

Navigation