Skip to main content
Log in

Improved laminaribiose phosphorylase production by Euglena gracilis in a bioreactor: A comparative study of different cultivation methods

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Laminaribiose phosphorylase (EC 2.4.1.31) catalyzes a reversible phosphorolysis reaction in which laminaribiose, a very high value sugar is produced. This enzyme is not being produced commercially therefore, to realize the most effective method for producing laminaribiose phosphorylase and obtaining as much activity units as possible per liter of culture, different cultivation methods of Euglena gracilis were compared. Heterotrophic and mixotrophic cultivations of Euglena gracilis in two different pHs, in flask and bioreactor were performed. The reverse phosphorolysis activity of laminaribiose phosphorylase produced under different cultivation methods was measured. The heterotrophic approach showed to be the more effective cultivation method as 47.6 IU/L was obtained compared to 27 IU/L in the mixotrophic one. The heterotrophic cultivation then was further investigated under two different pH values of the culture media. The culture at pH 6.8 resulted in 7.94 IU/L/day whereas only 4.06 was obtained for the culture at pH 4. Cultivation in a bioreactor resulted in a distinctive amount of 191.5 IU/L and an activity yield of 9.7 IU/g glucose compared to 5.4 in flask cultivation. Heterotrophic cultivation of Euglena gracilis in a bioreactor containing a culture media at pH 6.8 and controlled operation conditions showed enhanced laminaribiose phosphorylase activity production per liter and day of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giese, E. C., L. G. Covizzi, R. F. H. Dekker, N. K. Monteiro, M. L. Corradi da Silva, and A. M. Barbosa (2006) Enzymatic hydrolysis of botryosphaeran and laminarin by β-1,3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai. Process Biochem. 41: 1265–1271.

    Article  CAS  Google Scholar 

  2. Ogawa, Y., K. Noda, S. Kimura, M. Kitaoka, and M. Wada (2014) Facile preparation of highly crystalline lamellae of (1-3)-β-d-glucan using an extract of Euglena gracilis. Int. J. Biol. Macromol. 64: 415–419.

    Article  CAS  Google Scholar 

  3. Maréchal, L. R. and S. H. Goldemberg (1963) Laminaribiose phosphorylase from Euglena gracilis. Biochem. Biophysic. Res. Communicat. 13: 106–109.

    Article  Google Scholar 

  4. Nihira T., Y. Saito, M. Kitaoka, M. Nishimoto, K. Otsudo, and H. Nakai (2012) Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-dglucosyl disaccharides. Carbohyd. Res. 361: 49–54.

    Article  CAS  Google Scholar 

  5. Goldemberg, S. H., L. R. Maréchal, and B. C. De Souza (1966) β-1,3-oligoglucan: Orthophosphate from Euglena gracilis. J. Biol. Chem. 241: 45–50.

    CAS  Google Scholar 

  6. Kitaoka, M., Y. Matsuoka, K. Mori, M. Nishimoto, and K. Hayashi (2012) Characterization of a bacterial lamianribiose phosphorylase. Biosci. Biotechnol. Biochem. 76: 343–348.

    Article  CAS  Google Scholar 

  7. Barsanti, L. and P. Gualtieri (2014) Algae Anatomy, Biochemistry and Biotechnology. 2nd ed. CRC Press Taylor & Francis Group.

    Google Scholar 

  8. Takeda, T., Y. Nakano, M. Takahashi, N. Konno, Y. Sakamoto, R. Arashida, Y. Marukawa, E. Yoshida, T. Ishikawa, and K. Suzuki (2015) Identification and enzymatic characterization of an endo-1,3-β-glucanase from Euglena gracilis. Phytochem. 116: 21–27.

    Article  CAS  Google Scholar 

  9. O’Neill, E. C., M. Trick, L. Hill, M. Rejzek, R. G. Dusi, C. J. Hamilton, P. V. Zimba, B. Henrissat, and R. A. Field (2015) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol. BioSyst. 11: 2808–2820.

    Article  Google Scholar 

  10. Marechal, L. R. and S. H. Goldemberg (1964) Uridine diphosphate glucose-β-1,3-glucan β-3-glucosyltransferase from Euglena gracilis. J. Biol. Chem. 239: 3163–3167.

    CAS  Google Scholar 

  11. Manners, D. J. and G. Wilson (1974) Purification and properties of an endo-(1-3)-β-D-glucanase from malted barley. Carbohydr. Res. 37: 9–22.

    Article  CAS  Google Scholar 

  12. Manners, D. J. and D. Taylor (1967) Studies on carbohydrate of laminaribiose metabolizing enzrmes. Arch. Biochem. Biophys. 121: 443–451.

    Article  CAS  Google Scholar 

  13. Mokrosnop, V. M., A. V. Polishchuk, and E. K. Zolotareva (2016) Accumulation of a-tocopherol and β-carotene in Euglena gracilis cells under autotrophic and mixotrophic culture conditions. Appl. Biochem. Microbiol. 52: 216–221.

    Article  CAS  Google Scholar 

  14. Santek, B., M. Felski, K. Friehs, M. Lotz, and E. Flaschel (2009) Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Eng. Life Sci. 9: 23–28.

    Article  CAS  Google Scholar 

  15. Chae, S. R., E. J. Hwang, and H. S. Shin (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 97: 322–329.

    Article  CAS  Google Scholar 

  16. Tomita, Y., K. Yoshioka, H. Iijima, A. Nakashima, and O. Iwata (2016) Succinate and lactate production from Euglena gracilis during dark, anaerobic conditions. Front. Microbiol. 7: 1–8.

    Article  Google Scholar 

  17. Schulze, C., M. Wetzel, J. Reinhardt, M. Schmidt, L. Felten, and S. Mundt (2016) Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. J. Appl. Phycol. 28: 2719–2725.

    Article  CAS  Google Scholar 

  18. Jeong, U., J. Choi, C. Kang, B. Choi, and S. Kang (2016) Effect of growth conditions on the biomass and lipid production of Euglena gracilis cells raised in mixotrophic culture. Kor. J. Fish Aquat. Sci. 49: 30–37.

    CAS  Google Scholar 

  19. Ogbonna, J. C., S. Tomiyama, and H. Tanaka (1999) Production of a-tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis. Prog. Indust. Microbiol. 35: 213–221.

    Article  CAS  Google Scholar 

  20. Grimm, Ph., J. M. Risse, D. Cholewa, J. M. Müller, U. Beshay, K. Friehs, and E. Flaschel (2015) Applicability of Euglena gracilis for biorefineries demonstarted by the production of a-tocopherol and paramylon followed by anaerobic digestion. J. Biotechnol. 215: 72–79.

    Article  CAS  Google Scholar 

  21. Ogbonna, J. C. and H. Tanaka (2000) Light requirement and photosynthetic cell cultivation–development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol. 12: 207–218.

    Article  Google Scholar 

  22. Kitaoka, M., T. Sasaki, and H. Taniguchi (1992) Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase. J Biochem. 112: 40–44.

    Article  CAS  Google Scholar 

  23. Cramer, M. and J. Myers (1952) Growth and photosynthetic characteristics of Euglena gracilis. Arch. Microbiol. 17: 384–402.

    CAS  Google Scholar 

  24. Ogbonna, J. C., S. Tomiyama, and H. Tanaka (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of a-tocopherol. J. Appl. Phycol. 10: 67–74.

    Article  CAS  Google Scholar 

  25. Ogbonna, J. C. and H. Tanaka (1998) Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: A method of achieving continuous cell growth under light/dark cycles. Bioresour. Technol. 65: 65–72.

    Article  CAS  Google Scholar 

  26. Ogbonna, J. C. and H. Tanaka (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J. Ferment. Bioeng. 82: 558–564.

    Article  CAS  Google Scholar 

  27. Kitaoka, M., T. Sasaki, and H. Taniguchi (1993) Purification and properties of laminaribiose phosphorylase (EC 2.4.1.31) from Euglena gracilis Z. Arch. Biochem. Biophys. 304: 508–514.

    Article  CAS  Google Scholar 

  28. Yoshida, Y., T. Tomiyama, T. Maruta, M. Tomita, T. Ishikawa, and K. Arakawa (2016) De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genom. 17: 182.

    Article  Google Scholar 

  29. Zeng, M., W. Hao, Y. Zou, M. Shi, Y. Jiang, P. Xiao, A. Lei, Z. Hu, W. Zhang, L. Zhao, and J. Wang (2016) Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement ‘Euglena’. BMC Biotechnol. 16: 49.

    Article  Google Scholar 

  30. Grobbelaar, J. U. and C. J. Soeder (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J. Plankton Res. 7: 497–506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Jördening.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abi, A., Müller, C. & Jördening, HJ. Improved laminaribiose phosphorylase production by Euglena gracilis in a bioreactor: A comparative study of different cultivation methods. Biotechnol Bioproc E 22, 272–280 (2017). https://doi.org/10.1007/s12257-016-0649-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0649-8

Keywords

Navigation