Skip to main content
Log in

Hydrocarbon degradation capacity and population dynamics of a microbial consortium obtained using a sequencing batch reactor in the presence of molasses

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A native microbial consortium capable of degrading hydrocarbons was employed as an inoculum source in a sequencing batch reactor (SBR) using molasses as a carbon source. The microbial biomass in the SBR was able to grow in the presence of molasses, degrading 88% of the reducing sugar. Moreover, the consortium produced in the SBR was capable of maintaining 75% of the capacity for biodegradation of oil with respect to the original capacity of the native microbial consortium. Monitoring of the microbial population structure was accomplished using PCR-DGGE. The results indicated that the microbial populations grown in molasses were stable during crude oil degradation, as judged by comparison to the population structure of the native microbial consortium. The results obtained demonstrated that molasses could be used as a carbon source to promote the growth of biomass with oildegrading capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X., X. Wang, M. Liu, Y. Bu, J. Zhang, J. Chen, and J. Zhao (2015) Adsorption synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials. Mar. Pollut Bull. 92: 195–200.

    Article  CAS  Google Scholar 

  2. Mariano, A. J., V. H. Kourafalou, A. Srinivasan, H. Kang, G. R. Halliwell, E. H. Ryan, and M. Roffer (2011) On the modeling of the 2010 gulf of México oil spill. Dynam. Atmos. Oceans 52: 322–340.

    Article  Google Scholar 

  3. Ghazali, F. M., R. N. Z. A. Rahman, A. B. Salleh, and M. Basri (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int. Biodeterior. Biodegrad. 54: 61–67.

    Article  CAS  Google Scholar 

  4. Sathishkumar, M., A. R. Binupriya, S. H. Baik, and S. E. Yun (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. CLEAN-Soil, Air, Water 36: 92–96.

    Article  CAS  Google Scholar 

  5. Gojgic-Cvijovic, G. D., J. S. Milic, T. M. Solevic, V. P. Beskoski, M. V. Ilic, L. S. Djokic, T. M. Narancic, and M. M. Vrvic (2012) Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegrad. 23: 1–14.

    Article  CAS  Google Scholar 

  6. Ambujom, S. (2001) Studies on composition and stability of a large membered bacterial consortium degrading phenol. Microbiol. Res. 156: 293–302.

    Article  CAS  Google Scholar 

  7. Kurachi, K., R. Hosokawa, M. Takahashi, and H. Okuyama (2014) The potential of glycerol in freezing preservation of turbine oil-degrading bacterial consortium and the ability of the revised consortium to degrade petroleum wastes. Int. Biodeterior. Biodegrad. 88: 77–82.

    Article  CAS  Google Scholar 

  8. Wang, Z. Y., Y. Xu, H. -Y. Wang, J. Zhao, D. M. Gao, F. M. Li, and B. Xing (2012) Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere 22: 717–725.

    Article  Google Scholar 

  9. Lin, M., Y. Liu, W. Chen, H. Wang, and X. Hu (2014) Use of bacteria-immobilized cotton fibers to absorb and degrade crudeoil. Int. Biodeterior. Biodegrad. 88: 8–12.

    Article  CAS  Google Scholar 

  10. Mohan, S. V., G. Mohanakrishna, S. S. Reddy, B. D. Raju, K. S. R. Rao, and P. N. Sarma (2008) Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. Int. J. Hydrogen Energy 33: 6133–6142.

    Article  CAS  Google Scholar 

  11. Teclu, D., G. Tivchev, M. Laing, and M. Wallis (2009) Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria. J. Hazard. Mater. 161: 1157–1165.

    Article  CAS  Google Scholar 

  12. Gomes, E. B., R. F. Silva, A. S. Rosado, and J. Pereira (2010) Biotreatment of diesel waste by sequencing batch bioreactor operation mode (SBR). Inter. Biodeterior. Biodegrad. 64: 413–417.

    Article  CAS  Google Scholar 

  13. Jalali, S., J. Shayegan, and S. Rezasoltani (2015) Rapid start-up and improvement of granulation in SBR. J. Environ. Health. Sci. Eng. 13: 1–11.

    Article  CAS  Google Scholar 

  14. Venkata Mohan, S., S. V. Raghavulu, R. K. Goud, S. Srikanth, V. L. Babu, and P. N. Sarma (2010) Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions. Int. J. Hydrogen Energy 35: 12208–12215.

    Article  CAS  Google Scholar 

  15. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.

    CAS  Google Scholar 

  16. Hesham, A. E. -L., R. Qi, and M. Yang (2011) Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. J. Environ Sci. 23: 2049–2054.

    Article  Google Scholar 

  17. Canul-Chan, M., N. Estrella-Gómez, A. Zepeda, D. Cabañas-Vargas, and R. Rojas-Herrera (2014) A protocol for Metagenomic RNA extraction from bacterial consortium in the presence of crude oil. Rom. Biotech. Lett. 19: 8910–8915.

    CAS  Google Scholar 

  18. Bushnell, L. D. and H. F. Haas (1941) The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41: 653–673.

    CAS  Google Scholar 

  19. Rojas-Herrera, R., J. Narváez-Zapata, M. Zamudio-Maya, and M. Mena-Martínez (2008) A simple silica-based method for metagenomic DNA extraction from soil and sediments. Mol. Biotech. 40: 13–17.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959) Use of dinitrosalicyclic acid regeant for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  21. Peterson, G. I. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83: 346–356.

    Article  CAS  Google Scholar 

  22. Deppe, U., H. H. Richnow, W. Michaelis, and G. Antranikian (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9: 461–470.

    Article  Google Scholar 

  23. Antizar-Ladislao, B., K. Spanova, A. J. Beck, and N. J. Russell (2008) Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting. Int. Biodeterior. Biodegrad. 61: 357–364.

    Article  CAS  Google Scholar 

  24. Kermanshahipour, A., D. Karamanev, and A. Margaritis (2006) Kinetic modeling of the biodegradation of the aqueous p-xylene in the immobilized soil bioreactor. Biochem. Eng. J. 27: 204–211.

    Article  CAS  Google Scholar 

  25. Liu, J., X. Jia, J. Wen, and Z. Zhou (2012) Substrate interactions and kinetics study of phenolic compounds biodegradation by Pseudomonas sp. cbp1-3. Biochem. Eng. J. 67: 156–166.

    Article  CAS  Google Scholar 

  26. Texier, A. C. and J. Gomez (2007) Simultaneous nitrification and p-cresol oxidation in a nitrifying sequencing batch reactor. Water Res. 41: 315–322.

    Article  CAS  Google Scholar 

  27. He, Z., H. Xiao, L. Tang, H. Min, and Z. Lu (2013) Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge. Bioresour. Technol. 128: 526–532.

    Article  CAS  Google Scholar 

  28. Adav, S. S., D. J. Lee, and J. Y. Lai (2009) Functional consortium from aerobic granules under high organic loading rates. Bioresour. Technol. 100: 3465–3470.

    Article  CAS  Google Scholar 

  29. Patel, V., S. Jain, and D. Madamwar (2012) Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresour. Technol. 107: 122–130.

    Article  CAS  Google Scholar 

  30. Lee, D. J., K. Y. Show, and A. Wang (2013) Unconventional approaches to isolation and enrichment of functional microbial consortium: A review. Bioresour. Technol. 136: 697–706.

    Article  CAS  Google Scholar 

  31. Polymenakou, P. N., C. A. Christakis, M. Mandalakis, and A. Oulas (2015) Pyrosequencing analysis of microbial communities reveals dominant cosmopolitan phylotypes in deep-sea sediments of the eastern Mediterranean Sea. Res. Microbiol. 166: 448–457.

    Article  CAS  Google Scholar 

  32. Vedler, E., E. Heinaru, J. Jutkina, S. Viggor, T. Koressaar, M. Remm, and A. Heinaru (2013) Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes. Syst. Appl. Microbiol. 38: 525–532.

    Article  Google Scholar 

  33. Marín, M. M., T. H. Smiths, J. B. van Beilen, and F. Rojo (2001) The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolic repression control. J. Bacteriol. 183: 4202–4209.

    Article  Google Scholar 

  34. Guo, C., Z. Dang, Y. Wong, and N. F. Tam (2010) Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. Int. Biodeterior. Biodegrad. 64: 419–426.

    Article  CAS  Google Scholar 

  35. Kawasaki, A. and M. A. Kertesz (2010) Hydrocarbon-degrading sphingomonads: Sphingomonas, sphingobium, novosphingobium, and sphingopyxis. Handb Hydrocarbon Lipid Microbiol. 1693–1705.

    Google Scholar 

  36. Kobayashi, T., Y. Murai, K. Tatsumi, and Y. Iimura (2009) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Sci. Total Environ. 407: 5805–5810.

    CAS  Google Scholar 

  37. Adav, S. S., D. J. Lee, K. Y. Show, and J. H. Tay (2008) Aerobic granular sludge: Recent advances. Biotechnol. Adv. 26: 411–423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Zepeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canul-Chan, M., Chable-Naal, J., Rojas-Herrera, R. et al. Hydrocarbon degradation capacity and population dynamics of a microbial consortium obtained using a sequencing batch reactor in the presence of molasses. Biotechnol Bioproc E 22, 170–177 (2017). https://doi.org/10.1007/s12257-016-0499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0499-4

Keywords

Navigation