Skip to main content
Log in

High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Astaxanthin additions to animal diets predominantly serve as colorization aid to satisfy consumer expectations and desire for a consistent product with familiar coloration, e.g. the characteristic pink colorization of the flesh of species being produced by aquaculture. The heterobasidiomycetous yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous) can be used as natural feed source of astaxanthin. However, currently, the majority of astaxanthin used for the feed market is produced by chemical synthesis. We present a further step in direction of a competitive production of natural astaxanthin in an optimized bioprocess with non-genetically modified Phaffia rhodozyma. After medium optimization AXJ-20, a mutant strain of P. rhodozyma wild-type strain ATCC 96594, was able to grow to a cell dry weight concentration of over 114 g per kg of culture broth in a fed-batch process. In this bioprocess, where pH was lowered from 5.5 to 3.5 during the maturation phase, AXJ-20 produced the highest value reported for astaxanthin production with P. rhodozyma up to now: 0.7 g astaxanthin per kg of culture broth with a space-time-yield of 3.3 mg astaxanthin per kg of culture broth per hour. Lowering the pH during the bioprocess and increasing trace element and vitamin concentrations prevented loss of cell dry weight concentration in the maturation phase and proved to be critical for astaxanthin concentration and purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations, The State of World Fisheries and Aquaculture -Opportunities and challenges. http://www.fao.org/3/a-i3720e.pdf

  2. Storebakken, T., P. Foss, K. Schiedt, E. Austreng, S. Liaaen-Jensen, and U. Manz (1987) Carotenoids in diets for salmonids: IV. Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitate and canthaxanthin. Aquacult. 65: 279–292.

    Article  CAS  Google Scholar 

  3. BCC Research LLC, The Global Market for Carotenoids (FOD025C) http://www.bccresearch.com/market-research/foodand-beverage/carotenoids-market-fod025c.html

  4. Higuera-Ciapara, I., L. Felix-Valenzuela, and F. Goycoolea (2006) Astaxanthin: A review of its chemistry and applications. Cr. Rev. Food Sci. 46: 185–196.

    Article  CAS  Google Scholar 

  5. Phaff, H., M. Miller, M. Yoneyama, and M. Soneda (1972) A comparative study of the yeast florae associated with trees on the Japanese Islands and in the west coast of North America. pp. 759–774. In: G. Terui (ed.). Fourth International Fermentation Symposum Proceedings: Fermentation Technology Today. Society of Fermentation Technology, Osaka, Japan.

    Google Scholar 

  6. Miller, M., M. Yoneyama, and M. Soneda (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26: 286–291.

    Article  Google Scholar 

  7. Golubev, W. (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11: 101–110.

    Article  CAS  Google Scholar 

  8. Andrewes, A. G., H. J. Phaff, and M. P. Starr (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochem. 15: 1003–1007.

    Article  CAS  Google Scholar 

  9. Schroeder, W. A. and E. A. Johnson (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J. Gen. Microbiol. 139: 907–912.

    Article  CAS  Google Scholar 

  10. Schroeder, W. A. and E. A. Johnson (1995) Carotenoids protect Phaffia rhodozyma against singlet oxygen damage. J. Ind. Microbiol. Biotechnol. 14: 502–507.

    CAS  Google Scholar 

  11. Ramirez, J., H. Gutierrez, and A. Gschaedler (2001) Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol. 88: 259–268.

    Article  CAS  Google Scholar 

  12. Schmidt, I., H. Schewe, S. Gassel, C. Jin, J. Buckingham, M. Hümbelin, G. Sandmann, and J. Schrader (2011) Biotechno logical production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 89: 555–571.

    Article  CAS  Google Scholar 

  13. Bjerkeng, B., M. Peisker, K. von Schwartzenberg, T. Ytrestøyl, and T. Åsgård (2007) Digestibility and muscle retention of astaxanthin in Atlantic salmon, Salmo salar, fed diets with the red yeast Phaffia rhodozyma in comparison with synthetic formulated astaxanthin. Aquacult. 269: 476–489.

    Article  CAS  Google Scholar 

  14. Whyte, J. N. C. and K. L. Sherry (2001) Pigmentation and composition of flesh of Atlantic salmon fed diets supplemented with the yeast Phaffia rhodozyma. North Am. J. Aquacult. 63: 52–57.

    Article  Google Scholar 

  15. Jacobson, G. K., S. O. Jolly, J. J. Sedmak, T. J. Skatrud, and J. M. Wasileski (1999) Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. US Patent 6,413,736.

    Google Scholar 

  16. de la Fuente, J. L., E. Peiro, B. Diez, A. T. Marcos, C. Schleissner, M. Rodriguez Saiz, C. Rodriguez Otero, W. Cabri, and J. L. Barredo (2005) Method of production of astaxanthin by fermenting selected strains of Xanthophyllomyces dendrorhous. US Patent 2005/0124032 A1.

    Google Scholar 

  17. Hoshino, T., Y. Setoguchi, and Y. Takagi (2008) Astaxanthin production using fed-batch fermentation process by Phaffia rhodozyma. US Patent 7,432,076.

    Google Scholar 

  18. Frengova, G. I. and D. M. Beshkova (2009) Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol. Biotechnol. 36: 163–180.

    Article  CAS  Google Scholar 

  19. Rodriguez-Saiz, M., J. L. de la Fuente, and J. L. Barredo (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl. Microbiol. Biotechnol. 88: 645–658.

    Article  CAS  Google Scholar 

  20. De Boer, L., B. Van Hell, and A. J. J. Krouwer (1997) Strains of Phaffia rhodozyma containing high levels of astaxanthin and low levels of 3-hydroxy-3´,4´-didehydro-b, Y-caroten-4-one (HDCO). US Patent 5,648,261.

    Google Scholar 

  21. Visser, H., G. Sandmann, and J. C. Verdoes (2005) Xanthophylls in fungi: Metabolic engineering of the astaxanthin biosynthetic pathway in Xantophyllomyces dendrorhous. pp. 257–272. In: J. Barredo (ed.). Microbial Processes and Products. Humana Press, Totowa, New Jersey, USA.

    Chapter  Google Scholar 

  22. Gassel, S., H. Schewe, J. Schrader, and G. Sandmann (2013) Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol. Lett. 35: 565–569.

    Article  CAS  Google Scholar 

  23. An, G. H., B. G. Jang, and M. H. Cho (2001) Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. J. Biosci. Bioeng. 92: 121–125.

    Article  CAS  Google Scholar 

  24. Hu, Z. -C., Y. -G. Zheng, Z. Wang, and Y. -C. Shen (2006) pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enz. Microb. Technol. 39: 586–590.

    Article  CAS  Google Scholar 

  25. Hu, Z. -C., Y. G. Zheng, Z. Wang, and Y. C. Shen (2007) Production of Astaxanthin by Xanthophyllomyces dendrorhous ZJUT46 with Fed-Batch Fermentation in 2.0 M3 Fermentor. Food Technol. Biotechnol. 45: 209–212.

    CAS  Google Scholar 

  26. An, G. H., D. B. Schuman, and E. A. Johnson (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. Environ. Microbiol. 55: 116–124.

    CAS  Google Scholar 

  27. Johnson, E. A. and G. -H. An (1991) Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11: 297–326.

    Article  CAS  Google Scholar 

  28. Meyer, P. S., J. C. du Preez, and S. G. Kilian (1993) Selection and evaluation of astaxanthin-overproducing mutants of Phaffia rhodozyma. World J. Microbiol. Biotechnol. 9: 514–520.

    Article  CAS  Google Scholar 

  29. Acheampong, E. A. and A. M. Martin (1995) Kinetic studies on the yeast Phaffia rhodozyma. J. Basic Microb. 35: 147–155.

    Article  CAS  Google Scholar 

  30. Kusdiyantini, E., P. Gaudin, G. Goma, and P. J. Blanc (1998) Growth kinetics and astaxanthin production of Phaffia rhodozyma on glycerol as a carbon source during batch fermentation. Biotechnol. Lett. 20: 929–934.

    Article  CAS  Google Scholar 

  31. Flores-Cotera, L. B., R. Martin, and S. Sanchez (2001) Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: Influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl. Microbiol. Biotechnol. 55: 341–347.

    Article  CAS  Google Scholar 

  32. Ni, H., Q. H. Chen, H. Ruan, Y. F. Yang, L. J. Li, G. B. Wu, Y. Hu, and G. Q. He (2007) Studies on optimization of nitrogen sources for astaxanthin production by Phaffia rhodozyma. J. Zhejiang Univ. Sci. B. 8: 365–370.

    Article  CAS  Google Scholar 

  33. Liu, Y. S. and J. Y. Wu (2008) Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. Biotechnol. Bioeng. 101: 996–1004.

    Article  CAS  Google Scholar 

  34. Wang, W. and L. Yu (2009) Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous. Z. Naturforsch. C. 64: 853–858.

    CAS  Google Scholar 

  35. de la Fuente, J. L., M. Rodríguez-Sáiz, C. Schleissner, B. Díez, E. Peiro, and J. L. Barredo (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J. Biotechnol. 148: 144–146.

    Article  Google Scholar 

  36. Gassel, S., J. Breitenbach, and G. Sandmann (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl. Microbiol. Biotechnol. 98: 345–350.

    Article  CAS  Google Scholar 

  37. Ojima, K., J. Breitenbach, H. Visser, Y. Setoguchi, K. Tabata, T. Hoshino, J. van den Berg, and G. Sandmann (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol. Genet. Genom. 275: 148–158.

    Article  CAS  Google Scholar 

  38. Liu, Y. -S., J. -Y. Wu, and K. -P. Ho (2006) Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem. Eng. J. 27: 331–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Schewe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schewe, H., Kreutzer, A., Schmidt, I. et al. High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess. Biotechnol Bioproc E 22, 319–326 (2017). https://doi.org/10.1007/s12257-016-0349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0349-4

Keywords

Navigation