Skip to main content
Log in

Cyclohexanone-induced stress metabolism of Escherichia coli and Corynebacterium glutamicum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Solvent stress occurs during whole-cell biocatalysis of organic chemicals. Organic substrates and/or products may accumulate in the cellular membranes of whole cells, causing structural destabilization of the membranes, which leads to disturbances in cellular carbon and energy metabolism. Here, we investigate the effect of cyclohexanone on carbon metabolism in Escherichia coli BL21 and Corynebacterium glutamicum ATCC13032. Adding cyclohexanone to the culture medium (i.e., glucose mineral medium) resulted in a decreased specific growth rate and increased cellular maintenance energy in both strains of bacteria. Notably, carbon metabolism, which is mainly involved to increase cellular maintenance energy, was very different between the bacteria. Carbon flux into the acetic acid fermentation pathway was dominantly enhanced in E. coli, whereas the TCA cycle appeared to be activated in C. glutamicum. In fact, carbon flux into the TCA cycle in E. coli appeared to be reduced with increasing amounts of cyclohexanone in the culture medium. Metabolic engineering of E. coli cells to maintain or improve TCA cycle activity and, presumably, that of the electron transport chain, which are involved in regeneration of cofactors (e.g., NAD(P)H and ATP) and formation of toxic metabolites (e.g., acetic acid), may be useful in increasing solvent tolerance and biotransformation of organic chemicals (e.g., cyclohexanone).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bornscheuer, U. T., G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins (2012) Engineering the third wave of biocatalysis. Natur. 485: 185–194.

    Article  CAS  Google Scholar 

  2. Lee, J. W., D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8: 536–546.

    Article  CAS  Google Scholar 

  3. Song, J. W., E. Y. Jeon, D. H. Song, H. Y. Jang, U. T. Bornscheuer, D. K. Oh, and J. B. Park (2013) Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ?-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew. Chem. Int. Ed. 52: 2534–2537.

    Article  CAS  Google Scholar 

  4. Song, J. W., J.H. Lee, U. T. Bornscheuer, and J. B. Park (2014) Microbial synthesis of medium chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long chain fatty acids. Adv. Synth. Catal. 356: 1782–1788.

    Article  CAS  Google Scholar 

  5. Kim, S. U., K. R. Kim, J. W. Kim, S. Kim, Y. U. Kwon, D. K. Oh, and J. B. Park (2015) Microbial synthesis of plant oxylipins from γ-linolenic acid through designed biotransformation pathways. J. Agric. Food Chem. 63: 2773–2781.

    Article  CAS  Google Scholar 

  6. Oh, H. Y., S. U. Kim, J. W. Song, J. H. Lee, W. -R. Kang, Y. S. Jo, K. R. Kim, U. Bornscheuer, D. K. Oh, and J. B. Park (2015) Biotransformation of linoleic acid into hydroxy fatty acids and carboxylic acids using a linoleate double bond hydratase as key enzyme. Adv. Synth. Catal. 357: 408–416

    Article  CAS  Google Scholar 

  7. Jang, H. -Y., K. Singha, H. -H. Kim, Y. -U. Kwon, and J. B. Park (2015) Chemo-enzymatic synthesis of 11-hydroxyundecanoic acid and 1,11-undecanedioic acid from ricinoleic acid. Green Chem. DOI: 10.1039/C1035GC01017A.

    Google Scholar 

  8. Woo, H. M. and J. B. Park (2014) Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J. Biotechnol. 180: 43–51.

    Article  CAS  Google Scholar 

  9. Lee, W. H., Y. C. Park, D. H. Lee, K. M. ParK, and J. H. Seo (2005) Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase. Appl. Biochem. Biotechnol. 124: 827–836.

    Article  Google Scholar 

  10. Doo, E. H., W. H. Lee, H. S. Seo, J. H. Seo, and J. B. Park (2009) Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J. Biotechnol. 142: 164–169.

    Article  CAS  Google Scholar 

  11. Oberleitner, N., C. Peters, J. Muschiol, M. Kadow, S. Sass, T. Bayer, P. Schaaf, N. Iqbal, F. Rudroff, M. D. Mihovilovic, and U. T. Bornscheuer (2013) An enzymatic toolbox for cascade reactions: a showcase for an in vivo redox sequence in asymmetric synthesis. ChemCatChem. 5: 3524–3528.

    Article  CAS  Google Scholar 

  12. Mallin, H., H. Wulf, and U. T. Bornscheuer (2013) A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of e-caprolactone from cyclohexanol. Enz. Microbiol. Technol. 53: 283–287.

    Article  CAS  Google Scholar 

  13. Lee, W. H., J. B. Park, K. Park, M. D. Kim, and J. H. Seo (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. 76: 329–338.

    Article  CAS  Google Scholar 

  14. Lee, W. H., E. H. Park, and M. D. Kim (2015) Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene. J. Microbiol. Biotechnol. 24: 1685–1689.

    Article  Google Scholar 

  15. Schmidt, S., C. Scherkus, J. Muschiol, U. Menyes, T. Winkler, W. Hummel, H. Groeger, A. Liese, H. G. Herz, and U. T. Bornscheuer (2015) An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew. Chem. Int. Ed. 54: 2784–2787.

    Article  CAS  Google Scholar 

  16. Park, J. B., B. Buhler, S. Panke, B. Witholt, and A. Schmid (2007) Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120 ΔC. Biotechnol. Bioeng. 98: 1219–1229.

    Article  CAS  Google Scholar 

  17. Buhler, B., J. B. Park, L. M. Blank, and A. Schmid (2008) NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl. Environ. Microbiol. 74: 1436–1446.

    Article  Google Scholar 

  18. Lee, S. M., J. Y Yun, J. M. Woo, S. H. Kang, K. M. Yang, and J. B. Park (2011) Improving the catalytic activity of cyclohexanone monooxygenase-based whole-cell biocatalysts under substrate toxic conditions. J. Kor. Soc. Appl. Biol. Chem. 54: 986–992.

    Article  CAS  Google Scholar 

  19. Laane, C., S. Boeren, R. Hilhorst, and C. Veeger (1987) Optimization of biocatalysis in organic media. In C. Laane, J. Tramper, and M. D. Lilly (eds.). Optimization of biocatalysis in organic media. Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  20. Sikkema, J., J. A. M. de Bont, and B. Poolman (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201–222.

    CAS  Google Scholar 

  21. Isken, S. and J. A. M. de Bont (1998) Bacteria tolerant to organic solvents. Extremophiles. 2: 229–238.

    Article  CAS  Google Scholar 

  22. Ramos, J. L., E. Duque, M. T. Callegos, P. Codoy, M. I. Ramos-Gonzlez, A. Rojas, W. Teran, and A. Segura (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56: 743–768.

    Article  CAS  Google Scholar 

  23. Miller, J. H. (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, NY, USA.

    Google Scholar 

  24. Eggeling, L. and M. Bott (2005) Handbook of Corynebacterium glutamicum. CRC Press, London. UK.

    Book  Google Scholar 

  25. Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. O. Palsson (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3:18.

    Article  Google Scholar 

  26. Marx, A., A. de Graaf, W. Wiechert, L. Eggeling, and H. Sahm (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol. Bioeng. 49: 111–129.

    Article  CAS  Google Scholar 

  27. Orth, J. D., I. Thiele, and B. O. Palsson (2010) What is flux balance analysis? Nat. Biotechnol. 28: 245–248.

    Article  CAS  Google Scholar 

  28. Lee, N. R., M. Lakshmanan, S. Aggarwal, J. W. Song, I. Karimi, D. Lee, and J. B. Park (2014) Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27. Microb. Cell Fact. 13:61.

    Article  Google Scholar 

  29. Yang, K. M., N. R. Lee, J. M. Woo, W. Choi, M. Zimmermann, L. M. Blank, and J. B. Park (2012) Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Res. 12: 675–684.

    Article  CAS  Google Scholar 

  30. Schellenberger, J., R. Que, R. M. T. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C. Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, and B. O. Palsson (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6: 1290–1307.

    Article  CAS  Google Scholar 

  31. Cakir, T., B. Kirdar, Z. I. Onsan, K. O. Ulgen, and J. Nielsen (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst. Biol. 1:18.

    Article  Google Scholar 

  32. Selvarasu, S., D. S. W. Ow, S. Y. Lee, M. M. Lee, S. K. W. Oh, I. A. Karimi, and D. Y. Lee (2009) Characterizing Escherichia coli DH5α growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnol. Bioeng. 102: 923–934.

    Article  CAS  Google Scholar 

  33. Julsing, M. K., D. Kuhn, A. Schmid, and B. Buehler (2012) Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol. Bioeng. 109: 1109–1119.

    Article  CAS  Google Scholar 

  34. Walton, A. Z. and J. D. Stewart (2002) An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol. Prog. 18: 262–268.

    Article  CAS  Google Scholar 

  35. Park, J. B., B. Buhler, T. Habicher, B. Hauer, S. Panke, B. Witholt, and A. Schmid (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol. Bioeng. 95: 501–512.

    Article  CAS  Google Scholar 

  36. Bae, J. W., S. Shin, S. M. Raj, S. E. Lee, S. G. Lee, Y. J. Jeong, and S. Park (2008) Construction and characterization of a recombinant whole-cell biocatalyst of Escherichia coli expressing styrene monooxygenase under the control of arabinose promoter. Biotechnol. Bioproc. Eng. 13: 69–76.

    Article  CAS  Google Scholar 

  37. Brynildsen, M. P. and J. C. Liao (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol. 5:277.

    Article  Google Scholar 

  38. Woo, J. M., K. M. Yang, S. U. Kim, L. M. Blank, and J. B. Park (2014) High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl. Microbiol. Biotechnol. 98: 6085–6094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Byung Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, NR., Yun, JY., Lee, SM. et al. Cyclohexanone-induced stress metabolism of Escherichia coli and Corynebacterium glutamicum . Biotechnol Bioproc E 20, 1088–1098 (2015). https://doi.org/10.1007/s12257-015-0607-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0607-x

Keywords

Navigation