Skip to main content
Log in

Overexpression of a nitrile hydratase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The putative Co-type nitrile hydratase (NHaseK, consisting of α- and β-subunits) genes and the putative activator (17K) gene adjacent to the β subunit region were cloned from Klebsiella oxytoca KCTC 1686. 17K is essential for the functional expression of recombinant NHaseK in Escherichia coli; however, the expression level of 17K was very low when the 17K gene and NHaseK structural genes were expressed as a gene cluster in E. coli BL21(DE3). To improve the 17K expression level and NHaseK activity, the expression cassette was redesigned by placing the 17K gene and NHaseK structural genes under the control of different promoters in the pETDuet-1 expression vector, co-expressing the 17K gene with the gene cluster in a double plasmid or a single plasmid with a double promoter, and introducing an efficient Shine- Dalgarno sequence 5' to the17K gene. The specific activity of NHaseK was improved when 17K was co-expressed with the gene cluster, whereas the production of NHaseK protein decreased. The maximum activity was achieved when an efficient Shine-Dalgarno sequence was introduced 5' to the 17K gene: the expression level of 17K was significantly improved and the expression level of NHaseK did not decrease significantly. The maximum activity was about 63,480 ± 1915.6 U/L broth towards 3-Cyanopyridine. Recombinant NHaseK could hydrolyze a wide range of aliphatic, aromatic, and heterocyclic nitriles, and convert racemic nitriles to the corresponding S-amides, with E values ranging from 9 to 17. The enzyme had a temperature optimum of 35°C and exhibited remarkably stability below 35°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AsANO, Y. (1980) A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agric. Biol. Chem. 44: 2251–2252.

    Article  CAS  Google Scholar 

  2. Sugiura, Y., J. Kuwahara, T. Nagasawa, and H. Yamada (1987) Nitrile hydratase: The first non-heme iron enzyme with a typical low-spin iron (III)-active center. J. Am. Chem. Soc. 109: 5848–5850.

    Article  CAS  Google Scholar 

  3. Brennan, B. A., G. Alms, M. J. Nelson, L. T. Durney, and R. C. Scarrow (1996) Nitrile hydratase from Rhodococcus rhodochrous J1 contains a non-corrin cobalt ion with two sulfur ligands. J. Am. Chem. Soc. 118: 9194–9195.

    Article  CAS  Google Scholar 

  4. Kobayashi, M. and S. Shimizu (1998) Metalloenzyme nitrile hydratase: Structure, regulation, and application to biotechnology. Nat. Biotechnol. 16: 733–736.

    Article  CAS  Google Scholar 

  5. Zheng, R. C., Z. Y. Yang, C. C. Li, Y. G. Zheng, and Y. C. Shen (2014) Industrial production of chiral intermediate of cilastatin by nitrile hydratase and amidase catalyzed one-pot, two-step biotransformation. J. Mol. Catal. B-Enzym. 102: 161–166.

    Article  CAS  Google Scholar 

  6. Pei, X. L., L. R. Yang, G. Xu, Q. Y. Wang, and J. P. Wu (2014) Discovery of a new Fe-type nitrile hydratase efficiently hydrating aliphatic and aromatic nitriles by genome mining. J. Mol. Catal. B-Enzym. 99: 26–33.

    Article  CAS  Google Scholar 

  7. Mersinger, L. J., E. C. Hann, F. B. Cooling, J. E. Gavagan, A. Ben-Bassat, S. J. Wu, K. L. Petrillo, M. S. Payne, and R. DiCosimo (2005) Production of acrylamide using alginate-immobilized E. coli expressing Comamonas testosteroni 5-MGAM-4D nitrile hydratase. Adv. Synth. Catal. 347: 1125–1131.

    Article  CAS  Google Scholar 

  8. Kim, B. Y., J. C. Kim, H. H. Lee, and H. H. Hyun (2001) Fedbatch fermentation for production of nitrile hydratase by Rhodococcus rhodochrous M33. Biotechnol. Bioproc. Eng. 6: 11–17.

    Article  CAS  Google Scholar 

  9. Raj, J., A. Seth, S. Prasad, and T. C. Bhalla (2007) Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl. Microbiol. Biot. 74: 535–539.

    Article  CAS  Google Scholar 

  10. Okamoto, S. and L. D. Eltis (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol. Microbiol. 65: 828–838.

    Article  CAS  Google Scholar 

  11. Zheng, Y. G., J. Chen, Z. Q. Liu, M. H. Wu, L. Y. Xing, and Y. C. Shen (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl. Microbiol. Biot. 77: 985–993.

    Article  CAS  Google Scholar 

  12. Wang, M. X., G. Lu, G. J. Ji, Z. T. Huang, O. Meth-Cohn, and J. Colby (2000) Enantioselective biotransformations of racemic a-substituted phenylacetonitriles and phenylacetamides using Rhodococcus sp. AJ270. Tetrahedron-Asymm. 11: 1123–1135.

    Article  CAS  Google Scholar 

  13. Watanabe, I., Y. Satoh, K. Enomoto, S. Seki, and K. Sakashita (1987) Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by resting Cells. Agric. Biol. chem. 51: 3201–3206.

    Article  CAS  Google Scholar 

  14. Nagasawa, T., K. Ryuno, and H. Yamada (1989) Superiority of Pseudomonas chlororaphis B23 nitrile hydratase as a catalyst for the enzymatic production of acrylamide. Experientia. 45: 1066–1070.

    Article  CAS  Google Scholar 

  15. Nagasawa, T., H. Shimizu, and H. Yamada (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl. Microbiol. Biot. 40: 189–195.

    Article  CAS  Google Scholar 

  16. Wang, Y. J., Y. G. Zheng, J. P. Xue, and Y. C. Shen (2007) Characterization of nitrile hydratation catalysed by Nocardia sp. 108. World J. Microbiol. Biotechnol. 23: 355–362.

    Article  Google Scholar 

  17. Rzeznicka, K., S. Schaetzle, D. Boettcher, J. Klein, and U. T. Bornscheuer (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl. Microbiol. Biot. 85: 1417–1425.

    Article  CAS  Google Scholar 

  18. Nojiri, M., M. Yohda, M. Odaka, Y. Matsushita, M. Tsujimura, T. Yoshida, N. Dohmae, K. Takio, and I. Endo (1999) Functional expression of nitrile hydratase in Escherichia coli: Requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J. Biochem. 125: 696–704.

    Article  CAS  Google Scholar 

  19. Pei, X. L, H. Y. Zhang, L. J. Meng, G. Xu, L. R. Yang, and J. P. Wu (2013) Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fedbatch strategy. Proc. Biochem. 48: 1921–1927.

    Article  CAS  Google Scholar 

  20. Shi, Y., H. M. Yu, X. D. Sun, Z. L. Tian, and Z. Y. Shen (2004) Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its functional expression using site-directed mutagenesis. Enz. Microb. Tech. 35: 557–562.

    Article  Google Scholar 

  21. Wu, S., R. D. Fallon, and M. S. Payne (1999) Engineering Pichia pastoris for stereoselective nitrile hydrolysis by co-producing three heterologous proteins. Appl. Microbiol. Biot. 52: 186–190.

    Article  CAS  Google Scholar 

  22. Mizunashi, W., M. Nishiyama, S. Horinouchi, and T. Beppu (1998) Overexpression of high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1 in recombinant Rhodococcus cells. Appl. Microbiol. Biot. 49: 568–572.

    Article  CAS  Google Scholar 

  23. Kang, M. S., S. S. Han, M. Y. Kim, B. Y. Kim, J. P. Huh, H. S. Kim, and J. H. Lee (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl. Microbiol. Biot. 98: 4379–4387.

    Article  CAS  Google Scholar 

  24. Kobayashi, M., M. Nishiyama, T. Nagasawa, S. Horinouchi, T. Beppu, and H. Yamada (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. BBA-Gene. Struct. Expr. 1129: 23–33.

    Article  CAS  Google Scholar 

  25. Chen, J., H. Yu, C. Liu, J. Liu, and Z. Shen (2012) Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J. Biotechnol. 164: 354–362.

    Article  CAS  Google Scholar 

  26. Wu, S., R. D. Fallon, and M. S. Payne (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: Activity requires a novel downstream protein. Appl. Microbiol. Biot. 48: 704–708.

    Article  CAS  Google Scholar 

  27. Prepachalova, I., L. Martinkova, A. Stolz, M. Ovesna, K. Bezouska, J. Kopecky, and V. Kren (2001) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Appl. Microbiol. Biot. 55: 150–156.

    Article  Google Scholar 

  28. Petrillo, K. L., S. J. Wu, E. C. Hann, F. B. Cooling, A. Ben-Bassat, J. E. Gavagan, R. DiCosimo, and M. S. Payne (2005) Overexpression in Escherichia coli of a thermally stable and regioselective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Appl. Microbiol. Biot. 67: 664–670.

    Article  CAS  Google Scholar 

  29. Bauer, R., H. J. Knackmuss, and A. Stolz (1998) Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens strain d3. Appl. Microbiol. Biot. 49: 89–95.

    Article  CAS  Google Scholar 

  30. Pawar, S. V. and G. D. Yadav (2014) Enantioselective enzymatic hydrolysis of rac-mandelonitrile to R-mandelamide by nitrile hydratase immobilized on poly(vinyl alcohol)/chitosan-glutaraldehyde support. Ind. Eng. Chem. Res. 53: 7986–7991.

    Article  CAS  Google Scholar 

  31. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  32. Chen, C. S., Y. Fujimoto, G. Girdaukas, and C. J. Sih (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104: 7294–7299.

    Article  CAS  Google Scholar 

  33. Kim, S. H. and P. Oriel (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enz. Microb. Tech. 27: 492–501.

    Article  CAS  Google Scholar 

  34. Kuhn, M. L., S. Martinez, N. Gumataotao, U. Bornscheuer, D. Liu, and R. C. Holz (2012) The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem. Bioph. Res. Co. 424: 365–370.

    Article  CAS  Google Scholar 

  35. Drechsel, O. and R. Bock (2011) Selection of Shine-Dalgarno sequences in plastids. Nucleic. Acids. Res. 39: 1427–1438.

    Article  CAS  Google Scholar 

  36. Li, G. W., E. Oh, and J. S. Weissman (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Natur. 484: 538–541.

    Article  CAS  Google Scholar 

  37. Yu, Q., Y. Li, A. Z. Ma, W. F. Liu, H. L. Wang, and G. Q. Zhuang (2011) An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences. Anal. Bioanal. Chem. 401: 2891–2898.

    Article  CAS  Google Scholar 

  38. Liu, Y., W. J. Cui, Y. Y. Xia, Y. T. Cui, M. Kobayashi, and Z. M. Zhou (2012) Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. Plos One. 7: e50829.

    Article  CAS  Google Scholar 

  39. Cowan, D., R. Cramp, R. Pereira, D. Graham, and Q. Almatawah (1998) Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophil. 2: 207–216.

    Article  CAS  Google Scholar 

  40. Nishiyama, M., S. Horinouchi, M. Kobayashi, T. Nagasawa, H. Yamada, and T. Beppu (1991) Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J. Bacteriol. 173: 2465–2472.

    CAS  Google Scholar 

  41. Duran, R. (1998) New shuttle vectors for Rhodococcus sp. R312 (formerly Brevibacterium sp. R312), a nitrile hydratase producing strain. J. Basic Microb. 38: 101–106.

    Article  CAS  Google Scholar 

  42. Nagasawa, T., H. Nanba, K. Ryuno, K. Takeuchi, and H. Yamada (1987) Nitrile hydratase of Pseudomonas chlororaphis B23. Eur. J. Biochem. 162: 691–698.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, FM., Wu, JP., Yang, LR. et al. Overexpression of a nitrile hydratase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. Biotechnol Bioproc E 20, 995–1004 (2015). https://doi.org/10.1007/s12257-015-0370-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0370-z

Keywords

Navigation