Skip to main content
Log in

Metabolic engineering of vitamin C production in Arabidopsis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Vitamin C (L-ascorbic acid, AsA) is a compound which provides major nutritional value, both for plants and humans. In this study, three distinct metabolic engineering strategies, including overexpression of biosynthesis enzyme, suppression of catabolism enzyme and switching the sub-cellular localization of compartment enzyme, were employed to enhance the production of AsA in Arabidopsis thaliana. The results showed that (1) overexpression of L-Galactose-1-P Phosphatase (GalPPase) enhanced AsA content to 3.96 µmol/g FW, which was 1.6-fold more than that in their wild-type (WT) counterparts; (2) RNAi suppression of ascorbate oxidase (AO) resulted in a significant increase of AsA accumulation (0.86 µmol/g FW) in apoplast; (3) both mitochondrion-target and none-target overexpression of L-Galactose dehydrogenase (GalDH) did not significantly promote AsA production compared with WT (1.96 µmol/g), however a dramatic enhancement was observed following infiltration with L-galactono-1, 4-lactone (L-GalL), both in transgenic and WT plants. The best line produced AsA with the content of 3.90 µmol/g FW, which was about 2-fold of that in the untreated control (1.99 µmol/g FW). This study provides new strategies including GalPPase overexpression, AO suppression as well as L-GalL feeding for modern breeding aimed at stimulating the AsA content in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tóth, S. Z., G. Schansker, and G. Garab (2013) The physiological roles and metabolism of ascorbate in chloroplasts. Physiol. Plantarum. 148: 161–175.

    Article  Google Scholar 

  2. Hameed, A., S. Gulzar, I. Aziz, T. Hussain, B. Gul, and M. A. Khan (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants. pii: plv004.

    Google Scholar 

  3. Domínguez-Perles, R., P. Mena, C. García-Viguera, and D. A. Moreno (2014) Brassica foods as a dietary source of vitamin C

    Google Scholar 

  4. Park, Y. S., M. H. Im, K. S. Ham, S. G. Kang, Y. K. Park, J. Namiesnik, H. Leontowicz, M. Leontowicz, E. Katrich, and S. Gorinstein (2013) Nutritional and pharmaceutical properties of bioactive compounds in organic and conventional growing kiwifruit. Plant Foods Hum. Nutr. Mar. 68: 57–64.

    Article  CAS  Google Scholar 

  5. Pappenberger, G. and H. P. Hohmann (2014) Industrial production of l-ascorbic acid (Vitamin C) and d-Isoascorbic Acid. Adv. Biochem. Eng. Biotechnol. 143: 143–188.

    CAS  Google Scholar 

  6. Smirnoff, N., P. L. Conklin, and F. A. Loewus (2001) Biosynthesis of ascorbic acid in plants: A renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 437–467.

    Article  CAS  Google Scholar 

  7. Cronje, C., G. M. George, A. R. Fernie, J. Bekker, J. Kossmann, and R. Bauer (2012) Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: Elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta. 235: 553–564.

    Article  CAS  Google Scholar 

  8. Tokunaga, T., K. Miyahara, K. Tabata, and M. Esaka (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta. 220: 854–863.

    Article  CAS  Google Scholar 

  9. Wang, Z. N., Y. Xiao, W. S. Chen, K. X. Tang, and L. Zhang (2010) Increased Vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in arabidopsis. J. Integr. Plant Biol. 52: 400–409.

    Article  CAS  Google Scholar 

  10. Zhou, Y., Q. C. Tao, Z. N. Wang, R. Fan, Y. Li, X. F. Sun, and K. X. Tang (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biologia Plantarum. 56: 451–457.

    Article  CAS  Google Scholar 

  11. Conklin, P. L. (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24: 383–394.

    Article  CAS  Google Scholar 

  12. Sakamoto, S., Y. Fujikawa, N. Tanaka, and M. Esaka (2012) Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum). Biosci. Biotechnol. Biochem. 76: 1155–1162.

    Article  CAS  Google Scholar 

  13. Conklin, P. L., S. Gatzek, G. L. Wheeler, J. Dowdle, M. J. Raymond, S. Rolinski, M. Isupov, J. A. Littlechild, and N. Smirnoff (2006) Arabidopsis thaliana VTC4 encodes L-galactose 1-phosphate phosphatase, a plant ascorbic acid biosynthetic enzyme. J. Biol. Chem. 281: 15662–15670.

    Article  CAS  Google Scholar 

  14. Ioannidi, E., M. S. Kalamaki, C. Engineer, I. Pateraki, D. Alexandrou, I. Mellidou, J. Giovannonni, and A. K. Kanellis (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J. Exp. Bot. 60: 663–678.

    Article  CAS  Google Scholar 

  15. Naohiro, K. and E. Muneharu (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol. Plantarum. 105: 321–329.

    Article  Google Scholar 

  16. Pignocchi, C., J. M. Fletcher, J. E. Wilkinson, J. D. Barnes, and C. H. Foyer (2003) The function of ascorbate oxidase in tobacco. Plant Physiol. 132: 1631–1641.

    Article  CAS  Google Scholar 

  17. Ali, N., S. K. Datta, and K. Datta (2010) RNA interference in designing transgenic crops. GM Crops. 1: 207–213.

    Article  Google Scholar 

  18. Gatzek, S., G. L. Wheeler, and N. Smirnoff (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J. 30: 541–553.

    Article  CAS  Google Scholar 

  19. Conklin, P. L., J. E. Pallanca, R. L. Last, and N. Smirnoff (1997) L-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol. 115: 1277–1285.

    Article  CAS  Google Scholar 

  20. Maarse, A. C., A. P. Van Loon, H. Riezman, I. Gregor, G. Schatz, and L. A. Grivell (1984) Subunit IV of yeast cytochrome c oxidase: cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein. EMBO J. 3: 2831–2837.

    CAS  Google Scholar 

  21. Clough, S. J. and A. F. Bent (1998) A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

    Article  CAS  Google Scholar 

  22. Yang, H. Q., Y. J. Wu, R. H. Tang, D. Liu, Y. Liu, and A. R. Cashmore (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Plant Cell. 103: 815–827.

    CAS  Google Scholar 

  23. Doyle, J. J. and J. L. Doyle (1990) Isolation of plant DNA from fresh tissue. Focus. 12: 13–15.

    Google Scholar 

  24. Jaakola, L., A. M. Pirttila, M. Halonen, and A. Hohtola (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol. 19: 201–203.

    Article  CAS  Google Scholar 

  25. Sanmartin, M., P. D. Drogouti, T. Lyons, J. Barnes, and A. K. Kanellis (2003) Overexpression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta. 216: 918–928.

    CAS  Google Scholar 

  26. Turcsányi, E., T. Lyons, M. Plöchl, and J. D. Barnes (2000) Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.).

    Google Scholar 

  27. Moser, O. and A. K. Kanellis (1994) Ascorbate oxidase of Cucumis melo L. var. reticulatus: Purification, characterisation and antibody production. J. Exp Bot. 45: 717–724.

    Article  CAS  Google Scholar 

  28. Moore, A. L. and M. O. Proudlove (1983) Mitochondria and submitochondrial particles. pp. 153–184. In: J. L. Hall and A. L. Moore (eds.). Isolation of Membranes and Organelles from Plant Cells. Academic Press, London, UK.

    Google Scholar 

  29. Ren, J., Z. Chen, W. Duan, X. Song, T. Liu, J. Wang, X. Hou, and Y. Li (2013) Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiol. Biochem. 73: 229–236.

    Article  CAS  Google Scholar 

  30. Hancock, R. D. and R. Viola (2002) Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol. 20: 299–305.

    Article  CAS  Google Scholar 

  31. Yoshimura, K., T. Nakane, S. Kume, Y. Shiomi, T. Maruta, T. Ishikawa, and S. Shigeoka (2014) Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Biosci. Biotechnol. Biochem. 78: 60–66.

    Article  CAS  Google Scholar 

  32. Lin, L. S. and J. E. Varner (1991) Expression of ascorbate oxidase in zucchini squash (Cucurbita pepo). Plant Physiol. 96: 159–165.

    Article  CAS  Google Scholar 

  33. Esaka, M. (1998) Gene expression and function of ascorbate oxidase in higher plants. Recent Res. Dev. Phytochem. 2: 315–326.

    CAS  Google Scholar 

  34. Smirnoff, N. (2000) Ascorbic acid: Metabolism and functions of a multifaceted molecule. Curr. Opin. Plant Biol. 3: 229–235.

    Article  CAS  Google Scholar 

  35. Schmitz, U. K. and D. M. Lonsdale (1989) A yeast mitochondrial presequence functions as a signal for targeting to plant mitochondria in vivo. Plant Cell. 8: 783–791.

    Article  Google Scholar 

  36. Hernould, M., S. Suharsono, S. Litvak, A. Araya, and A. Mouras (1993) Malesterility induction in transgenic tobacco plants with an unedited atp 9 mitochondrial gene from wheat. Proc. Natl. Acad. Sci. USA. 90: 2370–2374.

    Article  CAS  Google Scholar 

  37. Kohler, H. R., R. W. Zipfel, W. W. Webb, and R. M. Hanson (1997) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 11: 613–621.

    Article  CAS  Google Scholar 

  38. Nizampatnam, N. R., H. Doodhi, Y. Kalinati Narasimhan, S. Mulpuri, and D. K. Viswanathaswamy (2009) Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. Planta. 229: 987–1001.

    Article  CAS  Google Scholar 

  39. Momma, M. and Z. Fujimoto (2013) Expression, crystallization and preliminary X-ray analysis of rice L-galactose dehydrogenase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69: 809–811.

    Article  CAS  Google Scholar 

  40. Xu, Y., X. Zhu, Y. Chen, Y. Gong, and L. Liu (2013) Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Plant Physiol. Biochem. 70: 269–277.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kexuan Tang or Lei Zhang.

Additional information

These two authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Xiao, Y., Wang, Z. et al. Metabolic engineering of vitamin C production in Arabidopsis . Biotechnol Bioproc E 20, 677–684 (2015). https://doi.org/10.1007/s12257-015-0090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0090-4

Keywords

Navigation