Skip to main content
Log in

Optimization of nutrients for dinactin production by a marine Streptomyces sp. from the high latitude Arctic

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Streptomyces sp. R-527F, which produces the macrotetrolide antibiotic dinactin, was isolated from the sediments of the Arctic Ocean. In this work, optimization of the nutrients required for dinactin production including medium development and precursor stimulation, were investigated. Optimization of the medium and replacement of polar sea water were achieved using a one factor at a time experiment in conjunction with statistical analysis using methods covering Plackett–Burman design, the steepest descent method and central composite design. Dinactin production in the optimized medium was 160.8 mg/L, which was 47 fold higher than the control. Supplementation of the fermentation with exogenous acetate (1.5 mmol/L), succinate (6 mmol/L), malonate (24 mmol/L) and citrate (6 mmol/L) further enhanced dinactin biosynthesis by 42.7, 122.3, 66.7, and 62.1%, respectively. The precursors, in particular succinate, facilitated sugar use and also increased pH levels. Furthermore, a six-pulse feeding of total 6 mmol/L succinate in a 5 L bioreactor fermentation yielded a maximal production of 279.0 mg/L dinactin, 124.1% higher than that without precursor stimulation. This nutritional regulation process is easy to scale up and holds the potential for adaptation to industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling, X., Y. Yu, J. Zhu, and B. Chen (2009) Design and function on database of microorganisms from polar environments. Chin. J. Pol. Res. 21: 69–75.

    Google Scholar 

  2. Zeng, Y., B. Chen, Y. Zou, and T. Zheng (2008) Polar microorganisms, a potential source for new natural medicines. Acta Microbiol. Sini. 5: 695–700.

    Google Scholar 

  3. Ringo, E., M. Seppola, and A. Berg (2002) Characterization of Carnobacterium divergens strain 6251 isolated from intestine of Arctic charr (Salvelinus alpinus L.). System. Appl. Microbiol. 25: 120–129.

    Article  CAS  Google Scholar 

  4. Ivanova, V., D. Lyutskanova, and M. Kolarova (2010) Structural elucidation of a bioactive metabolites production by Streptomyces avidinii SB9 strain, isolated from permafrost soil in Spitsbergen, Arctic. J. Biotechnol. 24: 2092–2095.

    CAS  Google Scholar 

  5. Huang, J.P., N. Mojib, and R. R. Goli (2012) Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5–2, on multi-drugand methicillin resistant Staphylococcus aureus. Nat. Prod. Bioprospect. 2: 104–110.

    Article  CAS  Google Scholar 

  6. Li, Y., B. Sun, S. Liu, L. Jiang, X. Liu, H. Zhang, and Y. Che (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J. Nat. Prod. 71: 1643–1646.

    Article  CAS  Google Scholar 

  7. Al-Zereini, W., I. Schuhmann, H. Laatsch, E. Helmke, and H. Anke (2007) New aromatic nitro compounds from Salegentibacter sp. T436, an Arctic Sea ice bacterium: Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 60: 301–308.

    Article  CAS  Google Scholar 

  8. Li, L., D. Li, Y. Luan, Q. Gu, and T. Zhu (2012) Cytotoxic metabolites from the antarctic psychrophilic fungus Oidiodendron truncatum. J. Nat. Prod. 75: 920–927.

    Article  CAS  Google Scholar 

  9. Niu, D., L. Tian, J. Zhou, L. Zhen, and K. Chen (2007) A study on the insecticidal activity of Antarctic epiphyte Gliocladium catenulatum T31. Chin. J. Pol. Res. 19: 131–138.

    CAS  Google Scholar 

  10. Moller, C., T. Buhler, and M. M. Dreyfuss (1995) Intraspecific genetic diversity of Chaunopycnis alba detected by random amplified polymorphic DNA assay. Mycol. Res. 99: 681–688.

    Article  Google Scholar 

  11. Janek, T., M. Ukaszewicz, T. Rezanka, and A. Krasowska (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresourc. Technol. 101: 6118–6123.

    Article  CAS  Google Scholar 

  12. Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. 58:1–26.

    Article  CAS  Google Scholar 

  13. Řezanka, T., A. Prell, J. Spížek, and K. Sigler (2010) Pilot-plant cultivation of Streptomyces griseus producing homologues of nonactin by precursor-directed biosynthesis and their identification by LC/MS-ESI. J. Antibiot. 63: 524–529.

    Article  Google Scholar 

  14. Zizka Z. (1998) Biological effects of macrotetrolide antibiotics and nonactic acids. Folia Microbiol. 43: 7–14.

    Article  CAS  Google Scholar 

  15. Coutable, L., K. Adil, and C. Saluzzo (2008) Total synthesis of a novel macrotetrolide. Tetrahedron 64: 11296–11303.

    Article  CAS  Google Scholar 

  16. Dobler, M. (1972) The crystal structure of nonactin. Helv. Chim. Acta. 55: 1371–1384.

    Article  CAS  Google Scholar 

  17. Nelson, M. E. and N. D. Priestley (2002) Nonactin biosynthesis: The initial committed step is the condensation of acetate (malonate) and succinate. J. Am. Chem. Soc. 124: 2894–2902.

    Article  CAS  Google Scholar 

  18. Ashworth, D. M., C. A. Clark, and J. A. Robinson (1989) On the biosynthetic origins of the hydrogen atoms in the macrotetrolide antibiotics: And their mode of assembly catalysed by a nonactin polyketide synthase. J. Am. Chem. Soc. Perkin Trans. 1: 1461–1467.

    Article  Google Scholar 

  19. Kwon, H., W. C. Smith, A. J. Scharon, S. H. Hwang, M. J. Kurth, and B. Shen (2002) C-O bond formation by polyketide synthases. Sci. 297: 1327–1330.

    Article  CAS  Google Scholar 

  20. Umland, S. P., H. Shah, J. P. Jakway, J. Shortall, S. Razac, C. G. Garlisi, A. Falcone, T. T. Kung, D. Stelts, V. Hegde, M. Patel, M. M. Billah, and R. W. Egan (1999) Effects of cyclosporin A and dinactin on T-cell proliferation, interleukin-5 production, and murine pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 20: 481–492.

    Article  CAS  Google Scholar 

  21. Hansbro, P. M., G. E. Kaiko, and P. S. Foster (2011) Cytokine/anti-cytokine therapy-novel treatments for asthma? Bri. J. Pharmacol. 163: 81–95.

    Article  CAS  Google Scholar 

  22. Bernan, V. S., D. A. Montenegro, J. D. Korshalla, W. M. Maiese, D. A. Steinberg, and M. Greenstein (1994) Bioxalomycins new antibiotics produced by the marine Streptomyces sp. LL-31F508: Taxonomy and fermentation. J. Antibiot. 47: 1417–1424.

    Article  CAS  Google Scholar 

  23. Osterhage, C., M. Schwibbe, G. M. König, and A. D. Wright (2000) Differences between marine and terrestrial Phoma species as determined by HPLC-D AD and HPLC-MS. Phytochem. Anal. 11: 288–294.

    Article  CAS  Google Scholar 

  24. Masurekar, P. S. (2008) Nutritional and engineering aspects of microbial process development. Prog. Drug Res. 65: 292–328.

    Google Scholar 

  25. Silva, L. J., E. J. Crevelin, W. R. Souza, L. A. B. Moraes, I. S. Melo, and T. D. Zucchi (2014) Streptomyces araujoniae produces a multiantibiotic complex with ionophoric properties to control Botrytis cinerea. Phytopathol. 104: 1298–1305.

    Article  CAS  Google Scholar 

  26. Zhou, W., M. Cai, J. Zhou, T. Jiang, J. Zhou, M. Wang, X. Zhou, and Y. Zhang (2013) Nutrition and bioprocess development for efficient biosynthesis of an antitumor compound from marinederived fungus. J. Ind. Microbiol. Biotechnol. 40: 1131–1142.

    Article  CAS  Google Scholar 

  27. Cai, M., X. Zhou, X. Sun, K. Tao, and Y. Zhang (2009) Statistical optimization of medium composition for aspergiolide A production by marine-derived fungus Aspergillus glaucus. J. Ind. Microbiol. Biotechnol. 36: 381–389.

    Article  CAS  Google Scholar 

  28. Nelson, D. L. and M. M. Cox (2003) Lehningers principles of biochemistry. 4th ed., New York: Worth Publishers, USA.

    Google Scholar 

  29. Abe, I., Y. Utsumi, S. Oguro, H. Morita, Y. Sano, and H. Noguchi (2005) A plant type III polyketide synthase that produces pentaketide chromone. J. Am. Chem. Soc. 127: 1362–1363.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menghao Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., He, H., Wang, X. et al. Optimization of nutrients for dinactin production by a marine Streptomyces sp. from the high latitude Arctic. Biotechnol Bioproc E 20, 725–732 (2015). https://doi.org/10.1007/s12257-015-0050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0050-z

Keywords

Navigation