Skip to main content
Log in

Statistical optimization of medium composition for aspergiolide A production by marine-derived fungus Aspergillus glaucus

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Statistical methodologies were employed to optimize submerged culture medium for the production of a novel antineoplastic compound aspergiolide A by a marine-derived fungus Aspergillus glaucus HB1-19 for the first time. Orthogonal design was preformed to determine the initial composition. Then Plackett–Burman design was applied to evaluate the influence of related nutrients, and yeast extract paste, soybean powder and sodium glutamate were confirmed as critical factors in the medium. Response surface methodology (RSM) was finally taken as an effective approach to optimize the combination of the obtained three significant factors. The predicted maximal aspergiolide A production of 62.4 mg/L appeared at the region where the concentrations of sodium glutamate, soybean powder, and yeast extract paste were 2, 1, and 1.07 g/L, respectively. Under the proposed optimized conditions, the experimental aspergiolide A production reached 71.2 mg/L. The correlation between predicted value and measured value of these experiments proved the validity of the response model. After optimization, aspergiolide A production increased 4.22 times compared to that of the original medium. Elemental analysis was finally taken into consideration, and carbon–nitrogen ratio in the medium increased from 20.1:1 to 86.6:1. This great difference was inferred as the most important reason for production enhancement by metabolic pathway analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akhnazarova S, Kefarov V (1982) Experiment optimization in chemistry and chemical engineering. Mir, Moscow

    Google Scholar 

  2. Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE (2007) Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother 8(8):1039–1058. doi:10.1517/14656566.8.8.1039

    Article  PubMed  CAS  Google Scholar 

  3. Bernan VS, Montenegro DA, Korshalla JD, Maiese WM, Steinberg DA, Greenstein M (1994) Bioxalomycins new antibiotics produced by the marine Streptomyces sp. LL-31F508: taxonomy and fermentation. J Antibiot 47:1417–1424

    PubMed  CAS  Google Scholar 

  4. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337. doi:10.1007/s10295-005-0070-3

    Article  PubMed  CAS  Google Scholar 

  5. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61. doi:10.1039/b415080p

    Article  PubMed  CAS  Google Scholar 

  6. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78. doi:10.1039/b502792f

    Article  PubMed  CAS  Google Scholar 

  7. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New York

    Google Scholar 

  8. Chang MY, Tsai GJ, Houng JY (2006) Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme Microb Technol 38:407–414. doi:10.1016/j.enzmictec.2005.06.011

    Article  CAS  Google Scholar 

  9. Chang YN, Huang JC, Lee CC, Shih IL, Tzeng YM (2002) Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzyme Microb Technol 30:889–894. doi:10.1016/S0141-0229(02)00037-6

    Article  CAS  Google Scholar 

  10. Du L, Zhu TJ, Fang YC, Liu HB, Gu QQ, Zhu WM (2007) Aspergiolide A, a novel anthraquinone derivative with naphtho [1, 2, 3-de] chromene-2, 7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron 63:1085–1088. doi:10.1016/j.tet.2006.11.074

    Article  CAS  Google Scholar 

  11. Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39:1057–1062. doi:10.1016/S0032-9592(03)00232-2

    Article  CAS  Google Scholar 

  12. Elliott P (2006) Pathogenesis of cardiotoxicity induced by anthracyclines. Semin Oncol 33(3)(Suppl 8):S2–S7. doi:10.1053/j.seminoncol.2006.04.020

    Google Scholar 

  13. Escamilla EM, Dendooven L, Magana IP, Parra SP, De la Torre M (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 76:147–155. doi:10.1016/S0168-1656(99)00182-0

    Article  PubMed  CAS  Google Scholar 

  14. Hajji M, Rebai A, Gharsallah N, Nasri M (2008) Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Appl Microbiol Biotechnol 79:915–923. doi:10.1007/s00253-008-1508-0

    Article  PubMed  CAS  Google Scholar 

  15. He YQ, Tan TW (2006) Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99–125. J Mol Catal B 43:9–14. doi:10.1016/j.molcatb.2006.02.018

    Article  CAS  Google Scholar 

  16. Hortobagyi GN (1997) Anthracyclines in the treatment of cancer an overview. Drugs 54:1–7. doi:10.2165/00003495-199754010-00001

    Article  PubMed  CAS  Google Scholar 

  17. Kelecom A (2002) Secondary metabolites from marine microorganisms. An Acad Bras Cienc 74:151–170

    PubMed  CAS  Google Scholar 

  18. Leman J (1997) Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol 43:195–243. doi:10.1016/S0065-2164(08)70226-0

    Article  PubMed  CAS  Google Scholar 

  19. Li J, Ma C, Ma Y, Li Y, Zhou W, Xu P (2007) Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl Microbiol Biotechnol 74:563–571. doi:10.1007/s00253-006-0699-5

    Article  PubMed  CAS  Google Scholar 

  20. Li X, Xu T, Ma X, Guo K, Kai L, Zhao Y, Jia X, Ma Y (2008) Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresour Technol 99:5391–5396. doi:10.1016/j.biortech.2007.11.017

    Article  PubMed  CAS  Google Scholar 

  21. Li XY, Liu ZQ, Chi ZM (2008) Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology. Bioresour Technol 99:6386–6390. doi:10.1016/j.biortech.2007.11.065

    Article  PubMed  CAS  Google Scholar 

  22. Liu GQ, Wang XL (2007) Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl Microbiol Biotechnol 74:78–83. doi:10.1007/s00253-006-0661-6

    Article  PubMed  CAS  Google Scholar 

  23. Newman DJ, Cragg GM (2004) Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 11:1693–1713

    PubMed  CAS  Google Scholar 

  24. Osterhage C, Schwibbe M, König GM, Wright AD (2000) Differences between marine and terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS. Phytochem Anal 11:288–294. doi:10.1002/1099-1565(200009/10)11:5<288::AID-PCA528>3.0.CO;2-G

    Article  CAS  Google Scholar 

  25. Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas: current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134. doi:10.1007/s00253-002-1006-8

    Article  PubMed  CAS  Google Scholar 

  26. Rao YK, Tsay KJ, Wu WS, Tzeng YM (2007) Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochem 42:535–541. doi:10.1016/j.procbio.2006.10.007

    Article  CAS  Google Scholar 

  27. Singh G, Ahuja N, Batish M, Capalash N, Sharma P (2008) Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology. Bioresour Technol 99:7472–7479. doi:10.1016/j.biortech.2008.02.023

    Article  PubMed  CAS  Google Scholar 

  28. Xu CP, Kim SW, Hwang HJ, Choi JW, Yun JW (2003) Optimization of submerged culture conditions for mycelial growth and exobiopolymer production by Paecilomyces tenuipes C240. Process Biochem 38:1025–1030. doi:10.1016/S0032-9592(02)00224-8

    Article  CAS  Google Scholar 

  29. Yuan LL, Li YQ, Wang Y, Zhang XH, Xu YQ (2008) Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. J Biosci Bioeng 105:232–237. doi:10.1263/jbb.105.232

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281. doi:10.1016/j.mib.2005.04.008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2006AA09Z429). We are grateful to Ocean University of China for supply of the strain and the aspergiolide A standard.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Shan Zhou or Yuan-Xing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, MH., Zhou, XS., Sun, XQ. et al. Statistical optimization of medium composition for aspergiolide A production by marine-derived fungus Aspergillus glaucus . J Ind Microbiol Biotechnol 36, 381–389 (2009). https://doi.org/10.1007/s10295-008-0507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0507-6

Keywords

Navigation