Skip to main content
Log in

Identification of novel cytochrome P450 homologs using overlapped conserved residues based approach

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cytochrome P450 enzymes are one of the most versatile biological catalysts that are found in nature. They have potentials as a drug target in pharmaceutical industries, as a biocatalyst in bioconversion process in chemical industries, and as a biosensor in biomedical industries. Proteins in CYPs superfamily are closely related in structural and functional properties but share low sequence similarity, which makes the identification and characterization of the novel P450 homologs a challenging task. In this study, the overlapped conserved residue (OCR) based approach was used to identify the fingerprints for the alpha-helical rich CYPs, and they were tested to detect novel P450 homologs in the NCBI non-redundant protein sequence database. We could identify 13 potential novel P450 sequence homologs, which were validated at the sequence and structural levels for the presence of the conserved PROSITE motif and conserved Cytochrome P450 structure domain, respectively. This study suggests that the OCR-based approach can be a useful way to detect novel homologous a-helix rich proteins such as Cytochrome P450s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poulos, T.L., B. C. Finzel, and A. J. Howard(1987) High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195: 687–700.

    Article  CAS  Google Scholar 

  2. Danielson, P. B. (2002) The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug. Metab. 3: 561–597.

    Article  CAS  Google Scholar 

  3. Gonzalez, F. J. and D. W. Nebert(1990) Evolution of the P450 gene superfamily: Animal-plant ‘warfare’, molecular drive and human genetic differences in drug oxidation. Trends Genet. 6: 182–186.

    Article  CAS  Google Scholar 

  4. Meunier, B., S. P. de Visser, and S. Shaik (2004) Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem. Rev. 104: 3947–3980.

    Article  CAS  Google Scholar 

  5. Guengerich, F. P. (2008) Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 21: 70–83.

    Article  CAS  Google Scholar 

  6. Guengerich, F. P. (2004) Cytochrome P450: What have we learned and what are the future issues? Drug. Metab. Rev. 36: 159–197.

    Article  CAS  Google Scholar 

  7. Lamb, D. C., L. Lei, A. G. Warrilow, G. I. Lepesheva, J. G. Mullins, M. R. Waterman, and S. L. Kelly(2009) The first virally encoded cytochrome p450. J. Virol. 83: 8266–8269.

    Article  CAS  Google Scholar 

  8. Chiu, T. L., Z. Wen, S. G. Rupasinghe, and M. A. Schuler(2008) Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc. Natl. Acad. Sci. U S A. 105: 8855–8860.

    Article  CAS  Google Scholar 

  9. Hudson, S. A., K. J. McLean, A. W. Munro, and C. Abell(2012) Mycobacterium tuberculosis cytochrome P450 enzymes: A cohort of novel TB drug targets. Biochem. Soc Trans. 40: 573–579.

    Article  CAS  Google Scholar 

  10. Dodani, S. C., J. K. Cahn, T. Heinisch, S. Brinkmann-Chen, J. A. McIntosh, and F. H. Arnold(2014) Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE. Chembiochem. 15: 2259–2267.

    Article  CAS  Google Scholar 

  11. O'Reilly, E., V. Köhler, S. L. Flitsch, and N. J. Turner(2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem. Commun. (Camb). 47: 2490–2501.

    Article  Google Scholar 

  12. Kumar, S. (2010) Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert. Opin. Drug. Metab. Toxicol. 6: 115–131.

    Article  CAS  Google Scholar 

  13. Fasan, R., M. M. Chen, N. C. Crook, and F. H. Arnold(2007) Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. Angew. Chem. Int. Ed. Engl. 46: 8414–8418.

    Article  CAS  Google Scholar 

  14. Parvatham, K. and L. Veerakumari (2013) Drug Target Prediction Using Elementary Mode Analysis in Ascaris lumbricoides Energy Metabolism. Biotechnol. Bioproc. Eng. 3: 491–500.

    Article  Google Scholar 

  15. Cho, K. S. and S. J. Park(1997) Some Characteristics of Cytochrome c-555 Isolated from Sulfide Oxidizing Xanthomonas sp. DY44. Biotechnol. Bioproc. Eng. 1: 33–37.

    Article  Google Scholar 

  16. Wright, R. L., K. Harris, B. Solow, R. H. White, and P. J. Kennelly(1996) Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus. FEBS Lett. 384: 235–239.

    Article  CAS  Google Scholar 

  17. Chefson, A. and K. Auclair (2006) Progress towards the easier use of P450 enzymes. Mol. Biosyst. 2: 462–469.

    Article  CAS  Google Scholar 

  18. Goyal, A., S. Sokalingam, K. S. Hwang, and S. G. Lee(2014) Identification of an ideal-like fingerprint for a protein fold using overlapped conserved residues based approach. Sci. Rep. 4: 5643.

    CAS  Google Scholar 

  19. Goyal, A., B. Madan, K. S. Hwang, and S. G. Lee(2015) Identification of novel Cupredoxin homologs using Overlapped Conserved Residues based Approach. J. Microbiol. Biotechnol. 25: 127–136.

    Article  CAS  Google Scholar 

  20. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  CAS  Google Scholar 

  21. Holm, L. and P. Rosenstrom (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res. 38: W545-549.

  22. de Castro, E., C. J. Sigrist, A. Gattiker, V. Bulliard, P. S. Langendijk-Genevaux, E. Gasteiger, A. Bairoch, and N. Hulo(2006) ScanProsite: detection of PROSITE signature matches and Pro-Rule-associated functional and structural residues in proteins. Nucleic Acids Res. 34: 362–365.

    Article  Google Scholar 

  23. Sigrist, C. J., L. Cerutti, N. Hulo, A. Gattiker, L. Falquet, M. Pagni, A. Bairoch, and P. Bucher(2002) PROSITE: A documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3: 265–274.

    Article  CAS  Google Scholar 

  24. Kelley, L. A. and M. J. E. Sternberg(2009) Protein structure prediction on the web: A case study using the Phyre server. Nat. Protoc. 4: 363–365.

    Article  CAS  Google Scholar 

  25. Krieger, E., K. Joo, J. Lee, J. Lee, S. Raman, J. Thompson, M. Tyka, D. Baker, and K. Karplus(2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 77: 114–122.

    Article  CAS  Google Scholar 

  26. Laskowski, R. A., M. W. Macarthur, D. S. Moss, and J. M. Thornton(1993) PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283–291.

    Article  CAS  Google Scholar 

  27. Colovos, C. and T. O. Yeates (1993) Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2: 1511–1519.

    Article  CAS  Google Scholar 

  28. Eisenberg, D., R. Lüthy, and J. U. Bowie(1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277: 396–404.

    Article  CAS  Google Scholar 

  29. Laskowski, R. A., J. D. Watson, and J. M. Thornton(2005) Pro-Func: A server for predicting protein function from 3D structure. Nucleic Acids Res. 33: W89-W93.

  30. Laskowski, R. A., J. D. Watson, and J. M. Thornton(2005) Protein function prediction using local 3D templates. J. Mol. Biol. 351: 614–626.

    Article  CAS  Google Scholar 

  31. Roy, A., J. Yang, and Y. Zhang(2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 40: W471-477.

  32. PROSITE, Database of protein domains, families and functional sites, Cytochrome P450 cysteine heme-iron ligand signature. http://prosite.expasy.org/PDOC00081.

  33. Geourjon, C., C. Combet, C. Blanchet, and G. Deléage(2001) Identification of related proteins with weak sequence identity using secondary structure information. Protein Sci. 10: 788–797.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyu-Suk Hwang or Sun-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, A., Kim, BG., Hwang, KS. et al. Identification of novel cytochrome P450 homologs using overlapped conserved residues based approach. Biotechnol Bioproc E 20, 431–438 (2015). https://doi.org/10.1007/s12257-015-0013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0013-4

Keywords

Navigation