Skip to main content
Log in

Paired-termini antisense RNA mediated inhibition of DoxR in Streptomyces peucetius ATCC 27952

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2015

Abstract

Our previous study provided an insight into DoxR as a negative regulator of doxorubicin production in Streptomyces peucetius ATCC 27952. Streptomyces hosts are advantageous in terms of producing a number of pharmaceuticals in low titer. Antisense RNAs (asRNAs) silencing strategy acts as an alternative tool for metabolic engineering of microorganisms for construction of an efficient cell factory. In this study, a paired-termini antisense RNAs (PTasRNAs) silencing strategy was employed for inhibition of DoxR to enhance doxorubicin production. To continue this endeavor, we designed and constructed the piBR702 vector for the expression of PTasRNAs in monocistronic mode. Further, two variants of asRNA, adoxR and bdoxR were designed and cloned into piBR702. All the rDNAs were transformed into S. peucetius to generate engineered strains. The engineered strains, S. peucetius A and S. peucetius B produced enhanced titers of doxorubicin, daunorubicin, and e-rhodomycinone; however, no such change was seen in S. peucetius AB. Moreover, RT-PCR analysis of doxR from S. peucetius A and S. peucetius B, together with the higher production from S. peucetius A, confirmed adoxR as a better asRNA than bdoxR. The reason behind this could be due to the simple secondary structure and low binding free energy of adoxR (−419 kcal/mol) than bdoxR (−358.8 kcal/mol). Our study demonstrated that antibiotic production was enhanced significantly by inhibiting DoxR, a negative regulator in S. peucetius using PTasRNAs. In addition, this study further provides an insight into PTasRNAs as an effective tool for gene silencing in Streptomyces and its use as an effective tool for metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J. H., K. H. Lee, J. W. Shim, E. Y. Lee, and D. M. Kim (2013) Streamlined cell-free protein synthesis from sequence information. Biotechnol. Bioproc. Eng. 18: 1101–1108.

    Article  CAS  Google Scholar 

  2. Borodina, I. and J. Nielsen (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9: 609–620.

    Article  CAS  Google Scholar 

  3. Chaudhary, A. K., J. W. Park, Y. J. Yoon, B. G. Kim, and J. K. Sohng (2013a) Re-engineering of genetic circuit for 2-deoxystreptamine (2-DOS) biosynthesis in Escherichia coli BL21 (DE3). Biotechnol. Lett. 35: 285–293.

    Article  CAS  Google Scholar 

  4. Li, Y. and B. A. Pfeifer (2014) Heterologous production of plantderived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. Curr. Opin. Plant Biol. 19: 8–13.

    Article  CAS  Google Scholar 

  5. Na, D., S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.

    Article  CAS  Google Scholar 

  6. Ro, D. K., E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.

    Article  CAS  Google Scholar 

  7. Xu, P., A. Vansiri, N. Bhan, and M. A. Koffas (2012) ePathBrick: A synthetic biology platform for engineering metabolic pathways in Escherichia coli. ACS. Synth. Biol. 1: 256–266.

    Article  CAS  Google Scholar 

  8. Medema, M. H., R. Breitling, and E. Takano (2011) Synthetic biology in Streptomyces bacteria. Methods Enzymol. 497: 485–502.

    Article  CAS  Google Scholar 

  9. Herai, S., Y. Hashimoto, H. Higashibata, H. Maseda, H. Ikeda, S. Omura, and M. Kobayashi (2004) Hyper-inducible expression system for streptomycetes. Proc. Natl. Acad. Sci. USA. 101: 14031–14035.

    Article  CAS  Google Scholar 

  10. Luo, Y., H. Huang, J. Liang, M. Wang, L. Lu, Z. Shao, R. E. Cobb, and H. Zhao (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 4: 2894.

    Google Scholar 

  11. Sugimoto, Y., L. Ding, K. Ishida, and C. Hertweck (2014) Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. Angew. Chem. Int. Ed. Engl. 53: 1560–1564.

    Article  CAS  Google Scholar 

  12. Uguru, G. C., M. Mondhe, S. Goh, A. Hesketh, M. J. Bibb, L. Good, and J. E. Stach (2013) Synthetic RNA silencing of actinorhodin biosynthesis in Streptomyces coelicolor A3(2). PLoS One 8: 1–9.

    Article  Google Scholar 

  13. Zhuo, Y., T. Zhang, Q. Wang, P. Cruz-Morales, B. Zhang, M. Liu, F. Barona-Gómez, and L. Zhang (2014) Synthetic biology of avermectin for production improvement and structure diversification. Biotechnol. J. 9: 316–325.

    Article  CAS  Google Scholar 

  14. Chaudhary, A. K., D. Dhakal, and J. K. Sohng (2013b) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. Biomed. Res. Int. 2013: 968518.

    Article  Google Scholar 

  15. Liang, J. C., R. J. Bloom, and C. D. Smolke (2011) Engineering biological systems with synthetic RNA molecules. Mol. Cells 43: 915–926.

    Article  CAS  Google Scholar 

  16. Lucks, J. B., L. Qi, V. K. Mutalik, D. Wang, and A. P. Arkin (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. USA. 108: 8617–8622.

    Article  CAS  Google Scholar 

  17. Sharma, V., A. Yamamura, and Y. Yokobayashi (2012) Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS. Synth. Biol. 1: 6–13.

    Article  CAS  Google Scholar 

  18. Deshmukh, R. and H. J. Purohit (2014) siRNA mediated gene silencing in Fusarium sp. HKF15 for overproduction of bikaverin. Bioresour. Technol. 157: 368–371.

    Article  CAS  Google Scholar 

  19. Liu, Y., Y. Zhu, J. Li, H.D. Shin, R. R. Chen, G. Du, L. Liu, and J. Chen (2014) Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab. Eng. 23: 42–52.

    Article  CAS  Google Scholar 

  20. Jha, A. K., A. R. Anaya, A. K. Chaudhary, S. W. Park, W. J. Cho, and J. K. Sohng (2014) Metabolic engineering of rational screened Saccharopolyspora spinosa for the enhancement of spinosyns A and D Production. Mol. Cells 37: 727–733.

    CAS  Google Scholar 

  21. Yang, J., J. Li, Y. Hu, L. Li, L. Long, F. Wang, and S. Zhang (2015) Characterization of a thermophilic hemoglobin-degrading protease from Streptomyces rutgersensis SCSIO 11720 and its application in antibacterial peptides production. Biotechnol. Bioproc. Eng. 20: 79–90.

    Article  CAS  Google Scholar 

  22. D'Alia, D., K. Nieselt, S. Steigele, J. Müller, I. Verburg, and E. Takano (2010) Noncoding RNA of glutamine synthetase I modulates antibiotic production in Streptomyces Coelicolor A3(2). J. Bacteriol. 192: 1160–1164.

    Article  Google Scholar 

  23. Pánek, J., J. Bobek, K. Mikulík, M. Basler, and J. Vohradský (2008) Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC. Genomics 9: 1–11

    Article  Google Scholar 

  24. Swiercz, J. P., Hindra, J. Bobek, H. J. Haiser, C. D. Berardo, B. Tjaden, and M. A. Elliot (2008) Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res. 36: 7240–7251.

    Article  CAS  Google Scholar 

  25. Tezuka, T., H. Hara, Y. Ohnishi, and S. Horinouchi (2009) Identification and gene disruption of small noncoding RNAs in Streptomyces griseus. J. Bacteriol. 191: 4896–4904.

    Article  CAS  Google Scholar 

  26. Vockenhuber, M. P., C. M. Sharma, M. G. Statt, D. Schmidt, Z. Xu, S. Dietrich, H. Liesegang, D. H. Mathews, and B. Suess (2011) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA. Biol. 8: 468–477.

    Article  CAS  Google Scholar 

  27. Hindra., P. Pak, and M. A. Elliot (2010) Regulation of a novel gene cluster involved in secondary metabolite production in Streptomyces coelicolor. J. Bacteriol. 192: 4973–4982.

    Article  CAS  Google Scholar 

  28. Waters, L. S. and G. Storz (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.

    Article  CAS  Google Scholar 

  29. Romero, N. M. and R. P. Mellado (1995) Activation of the actinorhodin biosynthetic pathway in Streptomyces lividans. FEMS Microbiol. Lett. 127: 79–84.

    Article  CAS  Google Scholar 

  30. Romero, N. M., V. Parro, F. Malpartida, and R. P. Mellado (1992) Heterologous activation of the actinorhodin biosynthetic pathway in Streptomyces lividans. Nucleic Acids Res. 20: 2767–2772.

    Article  CAS  Google Scholar 

  31. Chaudhary, A. K., B. Singh, S. Maharjan, A. K. Jha, B. G. Kim, and J. K. Sohng (2014) Switching antibiotics production on and off in Actinomycetes by an IclR family transcriptional regulator from Streptomyces peucetius ATCC27952. J. Microbiol. Biotechnol. 24: 1065–1072.

    Article  CAS  Google Scholar 

  32. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces Genetics. John Innes Foundation, Norwich, UK.

    Google Scholar 

  33. Sambrook, J., E. F. Fritsch, and T. Maniatis (2001) Molecular cloning: A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  34. Vara, J., M. Lewandowska-Skarbek, Y. G. S. Wang, Donadio, and C. R. Hutchinson (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872–5881.

    CAS  Google Scholar 

  35. Sthapit. B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng (2004) Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS. Lett. 566: 201–206.

    Article  CAS  Google Scholar 

  36. Bibb, M. J., G. R. Janssen, and J. M. Ward (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE*) of Streptomyces erythraeus. Gene 38: 215–226.

    Article  CAS  Google Scholar 

  37. Pulido, D. and A. Jiménez (1987) Optimization of gene expression in Streptomyces lividans by a transcription terminator. Nucleic Acids Res. 15: 4227–4240.

    Article  CAS  Google Scholar 

  38. Nepal, K. K., T. J. Oh, B. Subba, J. C. Yoo, and J. K. Sohng (2008) Characterization of RbmD through neomycin production reconstituted from the engineered Streptomyces fradiae BS1. Mol. Cells 27: 83–88.

    Article  Google Scholar 

  39. Singh, B., C. B. Lee, and J. K. Sohng (2010) Precursor for biosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC27952. Appl. Microbiol. Biotechnol. 85: 1565–1574.

    Article  CAS  Google Scholar 

  40. Li, M., J. Wang, Y. Geng, Y. Li, Q. Wang, Q. Liang, and Q. Qi (2012) A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb. Cell Fact. 11: 1–10.

    Article  CAS  Google Scholar 

  41. Nakashima, N., T. Tamura, and L. Good (2006) Paired-termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res. 34: e138.

    Article  Google Scholar 

  42. Nakashima, N. and T. Tamura (2009) Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res. 37: 1–11.

    Article  Google Scholar 

  43. Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res. 31: 3429–3431.

    Article  CAS  Google Scholar 

  44. Malla, S., N. P. Niraula, K. Liou, and J. K. Sohng (2009) Selfresistance mechanism in Streptomyces peucetius: Overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol. Res. 165: 259–267.

    Article  Google Scholar 

  45. Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10: 134–139.

    Article  CAS  Google Scholar 

  46. Nakashima, N., S. Goh, L. Good, and T. Tamura (2012) Multiple-gene silencing using antisense RNAs in Escherichia coli. Methods Mol. Biol. 815: 307–319.

    Article  CAS  Google Scholar 

  47. Arcamone, F., G. Cassinelli, G. Fantini, A. Grein, P. Orezzi, C. Pol, and C. Spalla (1969) 14-Hydroxydaunomycin, a new antitumor antibiotic from Streptomyces peucetius var. caesius. Biotechnol. Bioeng. 11: 1101–1110.

    Article  CAS  Google Scholar 

  48. Kapranov, P., A. T. Willingham, and T. R. Gingeras (2007) Genomewide transcription and the implications for genomic organization. Nat. Rev. Genet. 8: 413–423.

    Article  CAS  Google Scholar 

  49. Tjaden, B., S. Sarah, Goodwin, A. Jason, Opdyke, A. Jason G. Maude, X. F. Daniel, G. Susan, and S. Gisela (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res. 34: 2791–2802.

    Article  CAS  Google Scholar 

  50. Georg, J. and W. R. Hess (2011) cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75: 286–300.

    Article  CAS  Google Scholar 

  51. Thomason, M. K. and G. Storz (2010). Bacterial antisense RNAs: How many are there, and what are they doing? Annu. Rev. Genet. 44: 167–188.

    Article  CAS  Google Scholar 

  52. Desai, R. P. and E. T. Papoutsakis (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl. Environ. Microbiol. 65: 936–945.

    CAS  Google Scholar 

  53. Hebert, C. G., J. J. Valdes, and W. E. Bentley (2008) Beyond silencing-engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr. Opin. Biotechnol. 19: 500–505.

    Article  CAS  Google Scholar 

  54. Yoo, S. M., D. Na, and S. Y. Lee (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat. Protoc. 8: 1694–1707.

    Article  CAS  Google Scholar 

  55. Chaudhary, A. K., D. Na, and E. Y. Lee (2015). Rapid and highthroughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol. Adv. doi number: 10.1016/ j.biotechadv.2015.05.009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A.K., Pokhrel, A.R., Hue, N.T. et al. Paired-termini antisense RNA mediated inhibition of DoxR in Streptomyces peucetius ATCC 27952. Biotechnol Bioproc E 20, 381–388 (2015). https://doi.org/10.1007/s12257-014-0810-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0810-1

Keywords

Navigation