Skip to main content

Advertisement

Log in

Re-engineering of genetic circuit for 2-deoxystreptamine (2-DOS) biosynthesis in Escherichia coli BL21 (DE3)

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Various approaches for monocistronic constructions of genetic circuits have been designed for metabolite production but there has been no attempt to apply such methodology for aminoglycosides biosynthesis. Here, a simple and commercially available bio-part, despite the current trend focusing on the standardized BioBricks bio-parts available in the registry, is used. A 181-bp nucleotide fragment was designed for the efficient construction of an expression vector for monocistronic assembly of genes. Furthermore, a single vector with multi-monocistronic assembled genes for 2-deoxystreptamine (2-DOS) synthesis was constructed for production in engineered Escherichia coli. The working efficiency of model vector was concluded by reporter assay whereas the expressions of biosynthesis genes were confirmed by RT-PCR and SDS-PAGE. Production of 2-DOS was confirmed by TLC, LC-ELSD, and ESI–MS/MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References:

  • Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1–12

    Article  PubMed  Google Scholar 

  • Bieger CD, Nierlich DP (1989) Distribution of 5′-triphosphate termini on the mRNA of Escherichia coli. J Bacteriol 171(1):141–147

    PubMed  CAS  Google Scholar 

  • Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235–426

    Article  PubMed  CAS  Google Scholar 

  • Clarot I, Chaimbault P, Hasdenteufel F, Netter P, Nicolas A (2004) Determination of gentamicin sulfate and related compounds by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1031:281–287

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Rivetti C, Dieci G (2004) Transcription reinitiation properties of bacteriophage T7 RNA polymerase. Biochem Biophys Res Commun 315:376–380

    Article  PubMed  CAS  Google Scholar 

  • Knight TF Jr (2003) Idempotent vector design for standard assembly of Biobricks. DSpace http://hdl.handle.net/1721.1/21168

  • Kurumbang NP, Liou K, Sohng JK (2009) Biosynthesis of paromamine derivatives in engineered Escherichia coli by heterologous expression. J Appl Microbiol 108:1780–1788

    Article  PubMed  Google Scholar 

  • Leandro P, Lechner MC, De Tavares Almeida I, Konecki D (2001) Glycerol increases the yield and activity of human phenylalanine hydroxylase mutant enzymes produced in a prokaryotic expression system. Mol Genet Metab 73(2):173–278

    Article  PubMed  CAS  Google Scholar 

  • Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci USA 108:10626–10631

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326

    Article  PubMed  Google Scholar 

  • Park JW, Hong JS, Parajuli N, Koh HS, Park SR, Lee MO, Lim SK, Yoon YJ (2007) Analytical profiling of biosynthetic intermediates involved in the gentamicin pathway of Micromonospora echinospora by high-performance liquid chromatography using electrospray ionization mass spectrometric detection. Anal Chem 7:4860–4869

    Article  Google Scholar 

  • Park JW, Park SR, Nepal KK, Han AR, Ban YH, Yoo YJ, Kim EJ, Kim EM, Kim D, Sohng JK, Yoon YJ (2011) Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol 7:843–852

    Article  PubMed  CAS  Google Scholar 

  • Parthier C, Görlich S, Jaenecke F, Breithaupt C, Bräuer U, Fandrich U, Clausnitzer D, Wehmeier UF, Böttcher C, Scheel D, Stubbs MT (2012) The o-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction. Angew Chem Int Ed Engl 51:4046–4052

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792

    Article  PubMed  CAS  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    Article  PubMed  CAS  Google Scholar 

  • Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C (2003) Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res 13:216–223

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Hotta K, Praseuth AP, Koketsu K, Migita A, Boddy CN, Wang CC, Oguri H, Oikawa H (2006) Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat Chem Biol 2:423–428

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Vansiri A, Bhan N, Koffas MAG (2012) ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 1:256–266

    Article  CAS  Google Scholar 

  • Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhao G, Ding X (2011) Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. Sci Rep 1:141

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Education, Science and Technology (2011-0031960) and by the grant from the Next-Generation BioGreen 21 Program (PJ008013), Rural Development Administration, and Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 988 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, A.K., Park, J.W., Yoon, Y.J. et al. Re-engineering of genetic circuit for 2-deoxystreptamine (2-DOS) biosynthesis in Escherichia coli BL21 (DE3). Biotechnol Lett 35, 285–293 (2013). https://doi.org/10.1007/s10529-012-1077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1077-2

Keywords

Navigation