Skip to main content
Log in

Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The efficiency of transdermal delivery of cosmetic ingredients is often limited by the outer layer of the skin, known as the stratum corneum, which can prevent diffusion of the cosmetic ingredients through the skin. A polymer microneedle array that dissolves in the skin can enhance the permeability of the skin to cosmetics. In this study, we prepared a polydimethylsiloxane (PDMS) mold to fabricate a microneedle array using laser-writing process which is a very simple and efficient method compared to conventional methods for preparing molds. Polyvinylpyrrolidone (PVP) and adenosine were used as a base material for the dissolving microneedles and a model cosmetic compound, respectively. Poly(ethylene glycol) dimethacrylate (PEGDMA) was copolymerized with PVP to control the properties of microneedles such as mechanical strength and solubility. PVP microneedle array was sufficiently sharp and with enough mechanical strength to create a transdermal pathway through the skin. The dissolution rate of the needle decreased with increasing PEGDMA content in the microneedle of PVP-PEGDMA copolymer. When adenosine was applied to the skin with the microneedle array, skin permeability to adenosine was improved by 150% compared to the control (without a microneedle array). These results indicate that the PVP microneedle array developed in this study has a potential to be used in cosmetics by combining with conventional cosmetic patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lupo, M. P. (2001) Antioxidants and vitamins in cosmetics. Clin. Dermatol. 19: 467–473.

    Article  CAS  Google Scholar 

  2. Bissett, D. L. (2009) Common cosmeceuticals. Clin. Dermatol. 27: 435–445.

    Article  Google Scholar 

  3. Kaczvinsky, J. R. and P. E. Grimes (2009) Practical applications of genomics research for treatment of aging skin. J. Drugs Dermatol. 8: S15–S18.

    Google Scholar 

  4. Draelos, Z. D. (2009) Cosmeceuticals: undefined, unclassified, and unregulated. Clin. Dermatol. 27: 431–434.

    Article  Google Scholar 

  5. Kim, Y.-C., J.-H. Park, and M. R. Prausnitz (2012) Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64: 1547–1567.

    Article  CAS  Google Scholar 

  6. Prausnitz, M. R. (2004) Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56: 581–587.

    Article  CAS  Google Scholar 

  7. Van der Maaden, K., W. Jiskoot, and J. Bouwstra (2012) Microneedle technologies for (trans) dermal drug and vaccine delivery. J. Control. Release. 161: 645–655.

    Article  CAS  Google Scholar 

  8. Kim, H. M., Y. Y. Lim, J. An, M. N. Kim, and B. J. Kim (2012) Pharmacology and therapeutics Transdermal drug delivery using disk microneedle rollers in a hairless rat model. Int. J. Dermatol. 51: 859–863.

    Article  CAS  Google Scholar 

  9. Zhou, C.-P., Y.-L. Liu, H.-L. Wang, P.-X. Zhang, and J.-L. Zhang (2010) Transdermal delivery of insulin using microneedle rollers in vivo. Int. J. Pharm. 392: 127–133.

    Article  CAS  Google Scholar 

  10. Kumar, A., X. Li, M. A. Sandoval, B. L. Rodriguez, B. R. Sloat, and Z. Cui (2011) Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int. J. Nanomed. 6: 1253–1264.

    CAS  Google Scholar 

  11. Lee, J. W., J.-H. Park, and M. R. Prausnitz (2008) Dissolving microneedles for transdermal drug delivery. Biomate. 29: 2113–2124.

    Article  CAS  Google Scholar 

  12. Liu, S., M.-N. Jin, Y.-S. Quan, F. Kamiyama, K. Kusamori, H. Katsumi, and A. Yamamoto (2014) Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur. J. Pharm. Biopharm. 86: 267–276.

    Article  CAS  Google Scholar 

  13. Kim, J. D., M. Kim, H. Yang, K. Lee, and H. Jung (2013) Dropletborn air blowing: Novel dissolving microneedle fabrication. J. Control. Release. 170: 430–436.

    Article  CAS  Google Scholar 

  14. Sorg, O., C. Antille, G. Kaya, and J. Saurat (2006) Retinoids in cosmeceuticals. Dermatol. Ther. 19: 289–296.

    Article  Google Scholar 

  15. Legendre, J. Y., I. Schnitzler, Q. Li, C. Hausen, M. Huart, G. S. Luengo, M. L. Abella, and M. Roreger (2007) Formulation, characterization, and efficacy of an adenosine-containing dissolvable film for a localized anti-wrinkle effect. J. Cosmet. Sci. 58: 147–155.

    CAS  Google Scholar 

  16. Oh M., J. Lee, S. Kim, S. Kim, K. Park, H. Yun, K. Baek, N. Kwon, and D. Kim (2009) Screening system establishment for potential antiwrinkle agents using human fibroblast elastase. J. Soc. Cosmet. Scient. Korea 35: 19–25.

    Google Scholar 

  17. Kim, B. J., H. J. Kim, S. M. Jung, J. K. Sung, and H. H. Lee (2009) Fabrication of microneedle using laser written PDMS mold for molecule transport into plant skin. BioChip J. 3: 281–286.

    Google Scholar 

  18. Jung, S. M., H. J. Kim, B. J. Kim, G. S. Joo, T. S. Yoon, Y. S. Kim, and H. H. Lee (2009) Amperometric detection of bisphenol-A on laser fabricated capillary electrophoresis device. BioChip J. 3: 219–223.

    Google Scholar 

  19. Park, J.-H., M. G. Allen, and M. R. Prausnitz (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control. Rel. 104: 51–66.

    Article  CAS  Google Scholar 

  20. Sullivan, S. P., N. Murthy, and M. R. Prausnitz (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 20: 933–938.

    Article  CAS  Google Scholar 

  21. Hariharan, R., S. Senthikumar, A. Suganthi, and M. Rajarajan (2013) Synthesis and characterization of daunorubicin modified ZnO/PVP nanorods and its photodynamic action. J. Photochem. Photobiol. A-Chem. 252: 107–115.

    Article  CAS  Google Scholar 

  22. Moes, J. J., S. L. W. Koolen, A. D. R. Huitema, J. H. M. Schellens, J. H. Beijnen, and B. Nuijen (2011) Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001) Int. J. Pharm. 420: 244–250.

    Article  CAS  Google Scholar 

  23. Bryant, S. J. and K. S. Anseth (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59: 63–72.

    Article  CAS  Google Scholar 

  24. Yang, J., G. Cho, T.-G. Lee, and B. Kim (2011) pH-Responsive hydrogel microparticles as intelligent delivery carriers for a-MSH antagonists. AIChE J. 57: 1919–1925.

    Article  CAS  Google Scholar 

  25. Park, Y.-J., J. Chang, P.-C. Chen, and V. C.-M. Yang (2001) Poly (L-lysine) based semi-interpenetrating polymer network as pH-responsive hydrogel for controlled release of a model protein drug streptokinase. Biotechnol. Bioproc. Eng. 6: 326–331.

    Article  CAS  Google Scholar 

  26. Davis, S. P., B. J. Landis, Z. H. Adams, M. G. Allen, and M. R. Prausnitz (2004) Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 37: 1155–1163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Hwan Sung or Bumsang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Park, J., Chu, G.S. et al. Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol Bioproc E 20, 543–549 (2015). https://doi.org/10.1007/s12257-014-0775-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0775-0

Keywords

Navigation