Skip to main content
Log in

Preparation of liposomes containing lysosomal enzymes for therapeutic use

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The preparation of fused materials using liposomes has been examined for several decades as a tool for the stabilization of heterogeneous enzymes. We investigated the liposomal encapsulation of lysosomal enzymes extracted from Saccharomyces cerevisiae. Liposomes were formed with L-α-phosphatidylcholine from egg yolk and cholesterol. To encapsulate whole lysosomal enzymes in liposomes made with and without cholesterol, L-α-phosphatidylcholine and cholesterol were added to chloroform at a ratio of 10:0 (L-α-phosphatidylcholine:cholesterol) and then evaporated for 10 min at 4°C. The residue after evaporation was mixed with lysosomal enzymes at the same ratio and then vortexed for 1 min and sonicated for 5 sec to encapsulate the enzymes. Liposome-encapsulated lysosomal enzymes were created using various amounts of lysosomal enzymes and cholesterol. The results indicated that the optimal encapsulation conditions were lipid:cholesterol ratios of 7:3 and 8:2. Liposome formation was confirmed by TEM imaging. After 1 day, two types of liposomes released small amounts of lysosomal enzymes. However, after 6 days, liposomes formed from mixtures of lipid and cholesterol did not exhibit any changes, whereas liposomes formed from only lipids released high amounts of lysosomal enzymes. Lysosomal enzymes encapsulated in liposomes have potential as important drug delivery carriers, as liposomes are able to control drug release and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Y., H. Yang, W. Yang, Y. Li, and C. Sun (2007) Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens. Actuator B-Chem. 124: 179–186.

    Article  CAS  Google Scholar 

  2. Azamian, B. R., J. J. Davis, K. S. Coleman, C. B. Bagshaw, and M. L. H. Freen (2002) Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124: 12664–12665.

    Article  CAS  Google Scholar 

  3. Kim, B. C., S. Nair, J. Kim, J. Kim, J. H. Kwak, J. W. Grate, S. H. Kim, and M. B. Gu (2005) Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnol. 16: 382–388.

    Article  CAS  Google Scholar 

  4. Liao, M. H. and D. H. Chen (2001) Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol. Lett. 23: 1723–1727.

    Article  CAS  Google Scholar 

  5. Sun, H. S., X. Zhu, L. Zhang, X. Gu, J. Wang, J. Li, and Y. Zhang (2013) PEDA-coated magnetic nanoparticles for gene delivery to Hep G2 cells. Biotechnol. Bioproc. Eng. 18: 648–654.

    Article  CAS  Google Scholar 

  6. Kim, J., J. W. Grate, and P. Wang (2006) Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61: 1017–1026.

    Article  CAS  Google Scholar 

  7. Klinger, A., D. Steinberg, D. Kohavi, and M. N. Sela (1998) Mechanism of adsorption of human albumin to titanium in vitro. J. Biomed. Mater. Res. Part A 36: 387–392.

    Article  Google Scholar 

  8. Cheng, Y.M., X. H. Jin, D. G, H. F. Xia, and J. H. Chen (2013) Thermodynamics and kinetics of lysozyme adsorption onto two kinds of weak cation exchangers. Biotechnol. Bioproc. Eng. 18: 950–955.

    Article  CAS  Google Scholar 

  9. Sokalingam, S. B. Madan, G. Raghunathan, and S. G. Lee (2013) In silico study on the effect of surface lysines and arginines on the electrostatic interactions and proteins stability. Biotechnol. Bioproc. Eng. 18: 18–26.

    Article  CAS  Google Scholar 

  10. Wiesner, M. R., G. V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas (2006) Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40: 4336–4345.

    Article  CAS  Google Scholar 

  11. Coleman, S. E., I. V. Rijn, and A. S. Bleiveis (1970) Lysis of grouped and ungrouped Streptococci by lysozyme. Infect. Immun. 2: 563–569.

    CAS  Google Scholar 

  12. Han, S. and Y. Yang (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigment. 64: 157–161.

    Article  CAS  Google Scholar 

  13. Yoon, J., J. M. Park, S. K. Jung, K. Y. Kim, Y. H. Kim, and J. Min (2009) Characterization of antimicrobial activity of the lysosomes isolated from Saccharomyces cerevisiae. Curr. Microbiol. 59: 48–52.

    Article  Google Scholar 

  14. Yoon, J., J. M. Park, K. J. Kim, Y. H. Kim, and J. Min (2009) Antimicrobial activity of the cell organelles, lysosomes, isolated from egg white. J. Microbiol. Biotechnol. 11: 1364–1368.

    Article  Google Scholar 

  15. Goyal, M, K. I. Roy, U. C. Banerjee, V. K. Sharma, and A. K. Bansal (2009) Role of benzyl alcohol in the prevention of heatinduced aggregation and inactivation of hen egg white lysozyme. Eur. J. Pharm. Biopharm. 71: 367–376.

    Article  CAS  Google Scholar 

  16. Ibrahim, H. R., T. Matsuzaki, and T. Aoki (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 506: 27–32.

    Article  CAS  Google Scholar 

  17. Guérin-Dubiard, C., M. Pasco, A. Hietanen, A. Quiros del Bosque, F. Nau, and T. Croguennec (2005) Hen egg white fractionation by ion-exchange chromatography. J. Chromatogr. A. 1090: 58–67.

    Article  Google Scholar 

  18. Gregoriadis, G. and D. E. Neerunjun (1974) Control of the rate of hepatic uptake and catabolism of liposome-entrapped protein injected into rats. Possible therapeutic applications. Eur. J. Biochem. 47: 179–185.

    Article  CAS  Google Scholar 

  19. Sulkowski, W. W., D. Pentak, K. Nowak, and A. Sulkowska (2005) The influence of temperature, cholesterol content and pH on liposome stability. J. Mol. Struct. 744–747: 737–747.

    Article  Google Scholar 

  20. Lian, T. and R. J. Y. Ho (2001) Trends and developments in liposome drug delivery system. J. Pharm. Sci. 90: 667–680.

    Article  CAS  Google Scholar 

  21. Lapinski, M. M. A. Castro-Forero, A. J. Greiner, R. Y. Ofoli, and G. J. Blanchard (2007) Comparison of liposomes formed by sonciation and extrusion: Rotational and translational diffusion of an embedded chromophore. Langmuir 23: 11677–11683.

    Article  CAS  Google Scholar 

  22. Gier, J. D., J. G. Mandersloot, and L. L. M. V. Deenen (1969) The role of cholesterol in lipid membranes. Biochim. Biophys. Acta. 173: 143–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiho Min.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, S.H., Sekhon, S.S., Kim, YH. et al. Preparation of liposomes containing lysosomal enzymes for therapeutic use. Biotechnol Bioproc E 19, 766–770 (2014). https://doi.org/10.1007/s12257-014-0327-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0327-7

Keywords

Navigation