Skip to main content
Log in

Effects of different mineral supplements on fertilization of phenol-contaminated soils by Corynebacterium glutamicum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2014

Abstract

This study focused on the effects of different mineral supplements on the ability of Corynebacterium glutamicum to degrade phenol in contaminated soil and convert the phenol into useful amino acids. Three types of minerals including FeSO4, MgSO4, and MnSO4 were added at several concentrations to C. glutamicum culture media containing 1% yeast extract prior to treating the soil samples with 4.24 mM phenol. The reactor was incubated at 30°C and 150 rpm for 3 days, and the treated soil was sampled daily and analyzed using gas chromatography for residual phenol and the amino acids produced. Additionally, a plant toxicity assay was employed to examine the fertilization of the phenol-contaminated soil after C. glutamicum treatment supplemented with the three minerals. Our results suggested that among various tested concentrations, 72 μM of iron showed a significant effect on the utilization of phenol by C. glutamicum for conversion to amino acids, therefore enhancing fertilization of the phenol-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nardi, A., R. Avrahami, E. Zussman, J. S. Rokem, and C. L. Greenblatt (2012) Phenol biodegradation by Corynebacterium glutamicum encapsulated in electrospun fibers. J. Environ. Protection. 3: 164–168.

    Article  CAS  Google Scholar 

  2. Abdullah-Al-Mahin, A. Z. C., M. K. Alam, Z. Aktar, and A. Fakhruddin (2011) Phenol biodegradation by two strains of Pseudomonas putida and effect of lead and zinc on the degradation process. Int. J. Environ. 1: 27–33.

    Google Scholar 

  3. Diaz, E. (2004) Bacterial degradation of aromatic pollutants: A paradigm of metabolic versatility. Int. Microbiol. 7: 173–180.

    CAS  Google Scholar 

  4. Klein, J. (2000) Possibilities, limits and future developments of soil bioremediation. 2nd ed., pp. 465–476. Biotechnology Set. John Wiley and Sons.

    Google Scholar 

  5. Sabaté, J., M. Vinas, and A. Solanas (2004) Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int. Biodeter. Biodegr. 54: 19–25.

    Article  Google Scholar 

  6. Hamitouche, A., A. Amrane, Z. Bendjama, and F. Kaouah (2010) Effect of the Ammonium chloride concentration on the mineral medium composition — biodegradation of phenol by a microbial consortium. Int. J. Environ. Res. 4: 849–854.

    CAS  Google Scholar 

  7. Thomas, S., S. Sarfaraz, L. C. Mishra, and L. Iyengar (2002) Degradation of phenol and phenolic compounds by a defined denitrifying bacterial culture. World J. Microb. Biot. 18: 57–63.

    Article  CAS  Google Scholar 

  8. Brinkrolf, K., I. Brune, and A. Tauch (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet. Mol. Res. 5: 773–789.

    Google Scholar 

  9. Kinoshita, S., S. Udaka, and M. Shimono (2004) Studies on the amino acid fermentation — Part I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 50: 331–343.

    Google Scholar 

  10. Shen, X. H., Y. Huang, and S. -J. Liu (2005) Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microb. Environ. 20: 160–167.

    Article  Google Scholar 

  11. Shen, X. H., Z. P. Liu, and S. J. Liu (2004) Functional identification of the gene locus (ncg12319 and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum. Biotechnol. Lett. 26: 575–580.

    Article  CAS  Google Scholar 

  12. Lee, S. Y., T. H. Le, S. T. Chang, J. S. Park, Y. H. Kim, and J. Min (2010) Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum. Curr. Microbiol. 61: 596–600.

    Article  CAS  Google Scholar 

  13. Shen, X. H., N. Y. Zhou, and S. J. Liu (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: Another potential for applications for this bacterium? Appl. Microbiol. Biot. 95: 77–89.

    Article  CAS  Google Scholar 

  14. Wieschalka, S., B. Blombach, and B. J. Eikmanns (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl. Microbiol. Biot. 94: 449–459.

    Article  CAS  Google Scholar 

  15. Lee, S. Y., B. N. Kim, Y. W. Choi, K. S. Yoo, Y. H. Kim, and J. Min (2012) Growth response of avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum. J. Microbiol. Biotechnol. 22: 541–546.

    Article  CAS  Google Scholar 

  16. Chang, L. W., J. R. Meier, and M. K. Smith (1997) Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Arch. Environ. Con. Tox. 32: 166–171.

    Article  CAS  Google Scholar 

  17. Chen, B. Y., J. W. You, and J. S. Chang (2009) Optimal exponential feeding strategy for dual-substrate biostimulation of phenol degradation using Cupriavidus taiwanensis. J. Hazard Mater. 168: 507–514.

    Article  CAS  Google Scholar 

  18. Lee, S. Y., Y. H. Kim, and J. Min (2010) Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR. Appl. Microbiol. Biot. 85: 713–720.

    Article  CAS  Google Scholar 

  19. Sayles, G. D., C. M. Acheson, M. J. Kupferle, Y. Shan, Q. Zhou, J. R. Meier, L. Chang, and R. C. Brenner (1999) Land treatment of PAH contaminated soil: Performance measured by chemical and toxicity assays. Environ. Sci. Technol. 33: 4310–4317.

    Article  CAS  Google Scholar 

  20. Le, T. H., S. J. Kim, S. H. Bang, S. H. Lee, Y. W. Choi, P. Kim, Y. H. Kim, and J. Min (2012) Phenol degradation activity and reusability of Corynebacterium glutamicum coated with NH2-functionalized silica-encapsulated Fe3O4 nanoparticles. Bioresour. Technol. 104: 795–798.

    Article  CAS  Google Scholar 

  21. Moreira, I. S., C. L. Amorim, M. F. Carvalho, A. C. Ferreira, C. M. Afonso, and P. M. L. Castro (2013) Effect of the metals iron, copper and silver on fluorobenzene biodegradation by Labrys portucalensis. Biodegradat. 24: 245–255.

    Article  CAS  Google Scholar 

  22. Aldric, J. -M., J. Destain, and P. Thonart (2003) Study of some factors influencing biodegradation of isopropylbenzene by Rhodococcus erythropolis. Proceedings of the Environment 2010: Situation and Perspectives for the European Union. Porto, Portugal.

    Google Scholar 

  23. Santos, E. C., R. J. S. Jacques, F. M. Bento, M. D. R. Peralba, P. A. Selbach, E. L. S. Sa, and F. A. O. Camargo (2008) Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresour. Technol. 99: 2644–2649.

    Article  CAS  Google Scholar 

  24. Lin, C. W., S. Y. Chen, and Y. W. Cheng (2006) Effect of metals on biodegradation kinetics for methyl tert-butyl ether. Biochem. Eng. J. 32: 25–32.

    Article  CAS  Google Scholar 

  25. Lee, S. Y., H. S. Shin, J. S. Park, Y. H. Kim, and J. Min (2010) Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum. Appl. Microbiol. Biot. 86: 235–242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiho Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BN., Le, TH., Hong, E. et al. Effects of different mineral supplements on fertilization of phenol-contaminated soils by Corynebacterium glutamicum . Biotechnol Bioproc E 19, 276–281 (2014). https://doi.org/10.1007/s12257-013-0768-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0768-4

Keywords

Navigation