Skip to main content
Log in

An effective method for extraction of glutaryl-7-aminocephalosporanic acid acylase from recombinant E. coli cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, several chemical treatment techniques commonly used for protein extraction were investigated for recovering glutaryl-7-aminocephalosporanic acid acylase (GLA) from recombinant E. coli cells. The best results were obtained by the combined use of cetyltrimethylammonium bromide (CTAB) and KCl. Subsequently, various extraction conditions, such as cation salt, concentrations of CTAB and KCl, extraction temperature, extraction time, and biomass, were optimized to further enhance the release yield and specific activity of GLA. Our results showed that 110% of GLA was released after treatment with 0.5% CTAB (w/v, %) and 0.3 M KCl at 10°C for 12 h, and its specific activity in this extracting solution was approximately 1.5 times higher as compared to that obtained by sonication. This extraction method could avoid the inactivation of GLA caused by drastic mechanical methods, and also enhance its specific activity for industrial extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y., K. H. Yoon, Y. Khang, S. Turley, and W. G. J. Hol (2000) The 2.0 A crystal structure of cephalosporin acylase. Structure 8: 1059–1068.

    Article  CAS  Google Scholar 

  2. Grçger, H., Y. Asano, U. T. Bornscheuer, and J. Ogawa (2012) Development of biocatalytic processes in Japan and Germany: From research synergies to industrial applications. Chem. Asian J. 7: 1138–1153.

    Article  Google Scholar 

  3. Sonawane, V. C. (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 26: 95–120.

    Article  CAS  Google Scholar 

  4. Li, Y., J. F. Chen, W. H. Jiang, X. Mao, G. P. Zhao, and E. D. Wang (1999) In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp 130. Eur. J. Biochem. 262: 713–719.

    Article  CAS  Google Scholar 

  5. Ma, X. Q., E. Z. Su, Y. Zhu, S. W. Deng, and D. Z. Wei (2013) High-level expression of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas diminuta NK703 in Escherichia coli by combined optimization strategies. J. Biotechnol. 168: 607–615.

    Article  CAS  Google Scholar 

  6. Volontè, F., F. Marinelli, L. Gastaldo, S. Sacchi, M. S. Pilone, L. Pollegioni, and G. Molla (2008) Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein. Expr. Purif. 61: 131–137.

    Article  Google Scholar 

  7. Zhou, H., H. M. Yu, H. Luo, Y. Y. Shi, X. F. Ma, and Z. Y. Shen (2007) Inducible and constitutive expression of glutaryl-7-aminocephalosporanic acid acylase by fusion to maltose-binding protein. Enz. Microb. Technol. 40: 555–562.

    Article  CAS  Google Scholar 

  8. Kim, D. W. and K. H. Yoon (2001) Cloning and high expression of glutaryl 7-aminocephalosporanic acid acylase gene from Pseudomonas diminuta. Biotechnol. Lett. 23: 1067–1071.

    Article  CAS  Google Scholar 

  9. Li, Y., W. H. Jiang, Y. L. Yang, G. P. Zhao, and E. D. Wang (1998) Overproduction and purification of glutaryl-7-amino cephalosporanic acid acylase. Protein Expr. Purif. 12: 233–238.

    Article  CAS  Google Scholar 

  10. Zheng, Y. G., Y. Li, J. F. Chen, W. H. Jiang, G. P. Zhao, and E. D. Wang (2001) Two novel engineered bacteria for secretory expression of glutaryl7-amino-cephalosporanic acid acylase. Biotechnol. Lett. 23: 1781–1787.

    Article  CAS  Google Scholar 

  11. Novella, I. S., C. Fargues, and G. GréVillot (1994) Improvement of the extraction of penicillin acylase from Escherichia coli cells by a combined use of chemical methods. Biotechnol. Bioeng. 44: 379–382.

    Article  CAS  Google Scholar 

  12. Bansal-Mutalik, R. and V. G. Gaikar (2003) Cell permeabilization for extraction of penicillin acylase from Escherichia coli by reverse micellar solutions. Enz. Microb. Technol. 32: 14–26.

    Article  CAS  Google Scholar 

  13. Falconer, R. J., B. K. O’Neill, and A. P. J. Middelberg (1997) Chemical treatment of Escherichia coli: I. Extraction of intracellular protein from uninduced cells. Biotechnol. Bioeng. 53: 453–458.

    Article  CAS  Google Scholar 

  14. Tavares, F. and A. Sellstedt (2000) A simple, rapid and nondestructive procedure to extract cell wall-associated proteins from Frankia. J. Microbiol. Methods. 39: 171–178.

    Article  CAS  Google Scholar 

  15. Cheng, S. W., D. Z. Wei, and Q. X. Song (2006) Extraction penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with cetyl-trimethylammoniumbromide. Biochem. Eng. J. 32: 56–60.

    Article  CAS  Google Scholar 

  16. Wang, P. X., X. Y. Gong, E. Z. Su, J. L. Xie, and D. Z. Wei (2012) A facile pretreatment method for efficient immobilization of penicillin G acylase. Biochem. Eng. J. 56: 17–22.

    Article  Google Scholar 

  17. Sizmann, D., C. Keilmann, and A. Bock (1990) Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. Eur. J. Biochem. 192: 143–151.

    Article  CAS  Google Scholar 

  18. Kim, J. K., I. S Yang, H. J. Shin, K. J. Cho, E. K. Ryu, S. H. Kim, S. S Park, and K. H. Kim (2005) Insight into autoproteolytic activation from the structure of cephalosporin acylase: A protein with two proteolytic chemistries. PNAS. 103: 1732–1737.

    Article  Google Scholar 

  19. Kheirolomoom, A., M. Ardjmand, H. Fazelinia, and A. Zakeri (2001) Isolation of penicillin G acylase from Escherichia coli ATCC 11105 by physical and chemical treatments. Biochem. Eng. J. 8: 223–227.

    Article  CAS  Google Scholar 

  20. Balasingham, K., D. Warburton, P. Dunnill, and M. D. Lilly (1972) The isolation and kinetics of penicillin amidase from E. coli. Biochim. Biophys. Acta. (BBA)-Enzymol. 276: 250–256.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  22. Nagalakshmi, V. and J. S. Pai (1994) Permeabilization of Escherichia coli cells for enhanced penicillin acylase activity. Biotechnol. Tech. 8: 431–434.

    Article  CAS  Google Scholar 

  23. Felix, H. (1982) Permeabilized cells. Anal Biochem. 120: 211–234.

    Article  CAS  Google Scholar 

  24. Falconer, R. J., B. K. O’Neill, and A. P. J. Middelberg (1998) Chemical treatment of Escherichia coli: II. Direct extraction of recombinant protein from cytoplasmic inclusion bodies in intact cells. Biotechnol. Bioeng. 57: 381–386.

    Article  CAS  Google Scholar 

  25. Ignatova, Z., S. Stoeva, B. Galunsky, C. Hörnle, A. Nurk, E. Piotraschke, W. Voelter, and V. Kasche (1998) Proteolytic processing of penicillin amidase from Alcaligenes faecalis cloned in E. coli yields several active forms. Biotechnol. Lett. 20: 977–982.

    CAS  Google Scholar 

  26. Vaara, M. (1981) Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lilip A mutants. J. Bacteriol. 148: 426–434.

    CAS  Google Scholar 

  27. Brass, J. M., W. Boos, and R. Hengge (1981) Reconstitution of maltose transport in malB mutants of Escherichia coli through calcium-induced disruptions of the outer membrane. J. Bacteriol. 146: 10–17.

    CAS  Google Scholar 

  28. Nikaido, H. and M. Vaara (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1–32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Er-zheng Su or Dong-zhi Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Xq., Su, Ez., Deng, Sw. et al. An effective method for extraction of glutaryl-7-aminocephalosporanic acid acylase from recombinant E. coli cells. Biotechnol Bioproc E 20, 718–724 (2015). https://doi.org/10.1007/s12257-013-0607-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0607-7

Keywords

Navigation