Skip to main content
Log in

Analysis of glycated serum proteins in type 2 diabetes patients with nephropathy

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to screen for proteins that are susceptible to glycation under hyperglycemic conditions in patients with type 2 diabetic nephropathy. Serum proteins were analyzed by a proteomic approach using two-dimensional electrophoresis (2-DE) and ESI-Q-TOF MS/MS. Gels were stained with Pro-Q Emerald 488 to analyze the serum glycoproteome, followed by silver nitrate to examine the total serum proteome. Patient sera were divided into four groups according to their microalbuminuria index: type 2 diabetics with normoalbuminuria, microalbuminuria, and overt nephropathy, and healthy subjects. When the HbA1c levels of the diabetic groups were examined, groups with higher HbA1c exhibited higher fructosamine levels, suggesting that the loss of glycemic control affected the glycation of serum proteins. The proteins that became glycated under poor glycemic control were PEDF, apolipoprotein J precursor, hemopexin, immunoglobulin mu heavy chain, and immunoglobulin kappa chain. As albuminuria increased, a marker of kidney damage, the levels of glycated prekallikrein and complement factor C4B3 also increased. The glycated proteins identified in this study may provide the foundation for the development of novel markers of diabetes, hyperglycemia, and diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korc, M. (2003) Diabetes mellitus in the era of proteomics. Mol. Cell Proteomics 2: 399–404.

    CAS  Google Scholar 

  2. Abou-Seif, M. A. and A. A. Youssef (2004) Evaluation of some biochemical changes in diabetic patients. Clin. Chim. Acta 346: 161–170.

    Article  CAS  Google Scholar 

  3. Brownlee, M. (1995) The pathological implications of protein glycation. Clin. Invest. Med. 18: 275–281.

    CAS  Google Scholar 

  4. Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820.

    Article  CAS  Google Scholar 

  5. Ritz, E., I. Rychlik, F. Locatelli, and S. Halimi (1999) End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am. J. Kidney Dis. 34: 795–808.

    Article  CAS  Google Scholar 

  6. Rao, P. V., X. Lu, M. Standley, P. Pattee, G. Neelima, G. Girisesh, K. V. Dakshinamurthy, C. T. Roberts, and S. R. Nagalla (2007) Proteomic identification of urinary biomarkers of diabetic nephropathy. Diab. Care 30: 629–637.

    Article  CAS  Google Scholar 

  7. Steinke, J. M., A. R. Sinaiko, M. S. Kramer, S. Suissa, B. M. Chavers, M. Mauer and International Diabetic Nephropathy Study Group (2005) The early natural history of nephropathy in Type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54: 2164–2171.

    Article  CAS  Google Scholar 

  8. Matheson, A., M. D. Willcox, J. Flanagan, and B. J. Walsh (2010) Urinary biomarkers involved in type 2 diabetes: A review. Diab. Metab. Res. Rev. 26: 150–171.

    Article  CAS  Google Scholar 

  9. Ahmed, N. (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diab. Res. Clin. Pract. 67: 3–21.

    Article  CAS  Google Scholar 

  10. Raj, D. S., D. Choudhury, T. C. Welbourne, and M. Levi (2000) Advanced glycation end products: A Nephrologist’s perspective. Am. J. Kidney Dis. 35: 365–380.

    Article  CAS  Google Scholar 

  11. Ulrich, P. and A. Cerami (2001) Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56: 1–21.

    Article  CAS  Google Scholar 

  12. Jaleel, A., P. Halvatsiotis, B. Williamson, P. Juhasz, S. Martin, and K. S. Nair (2005) Identification of Amadori-modified plasma proteins in type 2 diabetes and the effect of short-term intensive insulin treatment. Diab. Care 28: 645–652.

    Article  CAS  Google Scholar 

  13. Schalkwijk, C. G., N. Chaturvedi, H. Twaafhoven, V. W. van Hinsbergh, and C. D. Stehouwer (2002) Amadori-albumin correlates with microvascular complications and precedes nephropathy in type 1 diabetic patients. Eur. J. Clin. Invest. 32: 500–506.

    Article  CAS  Google Scholar 

  14. Chase, H. P., W. E. Jackson, S. L. Hoops, R. S. Cockerham, P. G. Archer, and D. O’Brien (1989) Glucose control and the renal and retinal complications of insulin-dependent diabetes. JAMA 261: 1155–1160.

    Article  CAS  Google Scholar 

  15. Sullivan, K. A. and E. L. Feldman (2005) New developments in diabetic neuropathy. Curr. Opin. Neurol. 18: 586–590.

    Article  CAS  Google Scholar 

  16. Allgrove, J. and B. L. Cockrill (1988) Fructosamine or glycated haemoglobin as a measure of diabetic control? Arch. Dis. Child. 63: 418–422.

    Article  CAS  Google Scholar 

  17. Zhang, Q., N. Tang, A. A. Schepmoes, L. S. Phillips, R. D. Smith, and T. O. Metz (2008) Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J. Proteome Res. 7: 2025–2032.

    Article  CAS  Google Scholar 

  18. Ryu, J. K., H. S. Kim, and D. H. Nam (2012) Current status and perspectives of biopharmaceutical drugs. Biotechnol. Bioproc. Eng. 17: 900–911.

    Article  CAS  Google Scholar 

  19. Cheng, J. S., X. M. Lv, and Y. J. Yuan (2012) Investigation of proteomic responses of streptomyces lydicus to pitching ratios for improving streptolydigin production. Biotechnol. Bioproc. Eng. 17: 997–1007.

    Article  CAS  Google Scholar 

  20. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  21. Baker, J. R., D. V. Zyzak, S. R. Thorpe, and J. W. Baynes (1994) Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds. Clin. Chem. 40: 1950–1955.

    CAS  Google Scholar 

  22. Johnson, R. N., P. A. Metcalf, and J. R. Baker (1983) Fructosamine: A new approach to the estimation of serum glycosylprotein; An index of diabetic control. Clin. Chim. Acta 127: 87–95.

    Article  CAS  Google Scholar 

  23. Kim, H. J., E. H. Cho, J. H. Yoo, P. K. Kim, J. S. Shin, M. R. Kim, and C. W. Kim (2007) Proteome analysis of serum from type 2 diabetics with nephropathy. J. Proteome. Res. 6: 735–743.

    Article  CAS  Google Scholar 

  24. Cho, E. H., M. R. Kim, H. J. Kim, D. Y. Lee, P. K. Kim, K. M. Choi, O. H. Ryu, and C. W. Kim (2007) The discovery of biomarkers for type 2 diabetic nephropathy by serum proteome analysis. Proteomics-Clin. Appl. 1: 352–361.

    Article  CAS  Google Scholar 

  25. Shurraw, S., B. Hemmelgarn, M. Lin, S. R. Majumdar, S. Klarenbach, B. Manns, A. Bello, M. James, T. C. Turin, and M. Tonelli (2011) Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease. Arch. Intern. Med. 171: 1920–1927.

    Article  Google Scholar 

  26. Lapolla, A., L. Molin, and P. Traldi (2013) Protein glycation in diabetes as determined by mass spectrometry. Int. J. Endocrinol. 2013: 11–21.

    Article  Google Scholar 

  27. Tombran-Tink, J. and L. V. Johnson (1989) Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest. Ophthalmol. Vis. Sci. 30: 1700–1707.

    CAS  Google Scholar 

  28. Jenkins, A., S. X. Zhang, A. Gosmanova, C. Aston, A. Dashti, M. Z. Baker, T. Lyons, and J. X. Ma (2008) Increased serum pigment epithelium derived factor levels in tye 2 diabetes patients. Diab. Res. Clin. Pr. 82: 5–7.

    Article  Google Scholar 

  29. Chen, H., Z. Zheng, R. Li, J. Lu, Y. Bao, X. Ying, R. Zeng, and W. Jia (2010) Urinary pigment epithelium-derived factor as a marker of diabetic nephropathy. Am. J. Nephrol. 32: 47–56.

    Article  CAS  Google Scholar 

  30. Müller-Eberhard, U. (1988) Hemopexin. Methods Enzymol. 163: 536–565.

    Article  Google Scholar 

  31. Zhang, Q., M. E. Monroe, A. A. Schepmoes, T. R. W. Clauss, M. A. Gritsenko, D. Meng, V. A. Petyuk, R. D. Smith, and T. O. Metz (2011) Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J. Proteome Res. 10: 3076–3088.

    Article  CAS  Google Scholar 

  32. Trougakos, I. P., M. Poulakou, M. Stathatos, A. Chalikia, A. Melidonis, and E. S. Gonos (2002) Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Exp. Gerontol. 37: 1175–1187.

    Article  CAS  Google Scholar 

  33. Jaffa, A. A., R. Durazo-Arvizu, D. Zheng, D. T. Lackland, S. Srikanth, W. T. Garvey, and A. H. Schmaier (2003) Plasma prekallikrein: Plasma prekallikrein: A risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 52: 1215–1221.

    Article  CAS  Google Scholar 

  34. Herwald, H., T. Renné, J. C. M. Meijers, D. W. Chung, J. D. Page, R. W. Colman, and W. Müller-Esterl (1996) Mapping of the discontinuous kininogen binding site of prekallikrein. A distal binding segment is located in the heavy chain domain A4. J. Bio. Chem. 271: 13061–13067.

    Article  CAS  Google Scholar 

  35. Kedzierska, K., K. Ciechanowski, E. Gołembiewska, K. Safranow, A. Ciechanowicz, L. Domański, M. Myślak, and J. Róźański (2005) Plasma prekallikrein as a risk factor for diabetic retinopathy. Arch. Med. Res. 36: 539–543.

    Article  CAS  Google Scholar 

  36. Mijovic, C., J. Fletcher, A. R. Bradwell, T. Harvey, and A. H. Barnett (1985) Relation of gene expression (allotypes) of the fourth component of complement to insulin dependent diabetes and its microangiopathic complications. BMJ 291: 9–10.

    Article  CAS  Google Scholar 

  37. Yamagishi, S., T. Matsui, H. Adachi, and M. Takeuchi (2010) Positive association of circulating levels of advanced glycation end products (AGEs) with pigment epithelium-derived factor (PEDF) in a general population. Pharmacol. Res. 61: 103–107.

    Article  CAS  Google Scholar 

  38. Yamagishi, S., T. Matsui, K. Nakamura, M. Takeuchi, and T. Imaizumi (2006) Pigment epithelium-derived factor (PEDF) prevents diabetes-or advanced glycation end products (AGE)-elicited retinal leukostasis. Microvasc. Res. 72: 86–90.

    Article  CAS  Google Scholar 

  39. Muranjan, M., V. Nussenzweig, and S. Tomlinson (1998) Characterization of the human serum Trypanosome toxin, Haptoglobin-related Protein. J. Bio. Chem. 273: 3884–3887.

    Article  CAS  Google Scholar 

  40. Epelbaum, R., C. Shalitin, R. Segal, C. Valansi, I. Arselan, D. Faraggi, M. M. Leviov, M. B. Shahar, and N. Haim (1998) Haptoglobin-related protein as a serum marker in malignant lymphoma. Pathol. Oncol. Res. 4: 271–276.

    Article  CAS  Google Scholar 

  41. Asleh, R. and A. P. Levy (2005) In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vas Heal. Risk Manag. 1: 19–28.

    Article  CAS  Google Scholar 

  42. Samir, M. A., A. S. Suleiman, M. A. S. Qasem, and H. Hisham (2008) Association of haptoglobin phenotypes with markers of diabetic nephropathy in Type 2 diabetes mellitus. J. Diab. Compl. 22: 384–388.

    Article  Google Scholar 

  43. Phadke, M., F. R. Billimoria, and V. Ninjoor (1998) Non enzymatic glycosylation of alpha-1-proteinase inhibitor of human plasma. J. Postgrad. Med. 44: 29–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Wha Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MR., Yu, SA., Kim, MY. et al. Analysis of glycated serum proteins in type 2 diabetes patients with nephropathy. Biotechnol Bioproc E 19, 83–92 (2014). https://doi.org/10.1007/s12257-013-0464-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0464-4

Keywords

Navigation