Skip to main content
Log in

Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The formation of environmentally toxic acidic waste from mining activities is a world-wide problem. Neutralization of this waste can be accomplished by physicochemical and/or biological means. In this short-term study, synthetic acid mine drainage was added to sand-filled mesocosms containing silica-dominated (quartz) sand. Glucose was added as a carbon source for microbial iron and/or sulphate reduction. Replicates contained two separate batches of sand obtained from the same quarry site. The investigations used to assess and compare the chemical and biological functioning of the replicates included system hydraulic conductivity measurements, sand chemistry, effluent chemistry and bacterial community fingerprinting. Minor differences in composition of the sand, including the levels of available nutrients and micronutrients, resulted in major differences in measured parameters. Significant differences in effluent chemistry were found in systems containing different batches of sand. It was demonstrated that the characteristics of the sand and the presence of acid mine drainage (AMD) impacted the bacterial community structure and function. The importance of the physical substrate on the selection of functional microbial communities in systems remediating AMD should not be under-estimated. The physical substrate should be carefully selected and it may be prudent to include small-scale comparative studies in each particular setting prior to full-scale implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potgieter-Vermaak, S. S., J. H. Potgieter, P. Monama, and R. Van Grieken (2006) Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Miner. Eng. 19: 454–462.

    Article  CAS  Google Scholar 

  2. Ritcey, G. M. (2005) Tailing management in gold plants. Hydrometall. 78: 477–495.

    Article  Google Scholar 

  3. Senko, J. M., P. Wanjugi, M. Lucas, M. A. Bruns, and W. D. Burgos (2008) Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. ISME J. 2: 1134–1145.

    Article  CAS  Google Scholar 

  4. Kalin, M., A. Fyson, and W. N. Wheeler (2006) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci. Total Environ. 366: 395–408.

    Article  CAS  Google Scholar 

  5. Mayes, W. M., L. C. Batty, P. L. Younger, A. P. Jarvis, M. Koiv, C. Vohla, and U. Mander (2009) Wetland treatment at extremes of pH: A review. Sci. Total Environ. 407: 3944–3957.

    Article  CAS  Google Scholar 

  6. Reifler, R. G., J. Krohn, B. Stuart, and C. Socotch (2008) Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage. Sci. Total Environ. 394: 222–229.

    Article  Google Scholar 

  7. Whitehead, P. G., B. J. Cosby, and H. Prior (2005) The Wheal Jane wetlands model for bioremediation of acid mine drainage. Sci. Total Environ. 338: 125–135.

    Article  CAS  Google Scholar 

  8. Bartzas, G. and K. Komnitsas (2010) Solid phase studies and geochemical modelling of low-cost permeable reactive barriers. J. Hazard. Mater. 183: 301–308.

    Article  CAS  Google Scholar 

  9. Gilbert, O., T. Rotting, J. L. Cortina, J. de Pablo, C. Ayora, J. L. Carrera, and J. Bolzicco (2011) In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcollar (Sw Spain). J. Hazard. Mater. 191: 287–295.

    Article  Google Scholar 

  10. Choudhary, R. P. and A. S. Sheoran (2012) Performance of single substrate in sulphate reducing bioreactor for the treatment of acid mine drainage. Miner. Eng. 39: 29–35.

    Article  CAS  Google Scholar 

  11. Song, H., G. -J. Yim, S. -W. Ji, C. M. Neculita, and T. Hwang (2012) Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs mixed substrates for metal removal. J. Environ. Manag. 111: 150–158.

    Article  CAS  Google Scholar 

  12. Sheoran, A. S., V. Sheoran, and R. P. Choudary (2012) Bioremediaiton of acid-rock drainage by sulphate-reducing prokaryotes: A review. Miner. Eng. 23: 1073–1100.

    Article  Google Scholar 

  13. Woulds, C. and B. T. Ngwenya (2004) Geochemical processes governing the performance of a constructed wetland treating acid mine drainage, Central Scotland. Appl. Geochem. 19: 1773–1783.

    Article  CAS  Google Scholar 

  14. Bilgin, A. A., J. Silverstein, and M. Hernandez (2005) Effects of soluble ferri-hydroxide complexes on microbial neutralization of acid mine drainage. Environ. Sci. Technol. 39: 7826–7832.

    Article  CAS  Google Scholar 

  15. Lovley, D. R. and E. J. P. Phillips (1988) Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472–1480.

    CAS  Google Scholar 

  16. Matthies, R., A. C. Aplin, A. J. Boyce, and A. P. Jarvis (2012) Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters. Sci. Total. Environ. 420: 238–249.

    Article  CAS  Google Scholar 

  17. Mulopo, J., H. Greben, J. Sigama, V. Radebe, M. Mashengo, and L. Burke (2011) The relationship between sulphate reduction and COD/VFA utilization using grass cellulose as carbon and energy sources. Appl. Biochem. Biotechnol. 163: 393–403.

    Article  CAS  Google Scholar 

  18. Wijekoon, K. C., C. Visvanathan, and A. Abeynayaka (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 102: 5353–5360.

    Article  CAS  Google Scholar 

  19. Logan, M. V., K. F. Reardon, L. A. Figueroa, J. E. T. McLain, and D. M. Ahmann (2005) Microbial community activities during establishment, performance and decline of bench-scale passive treatment systems. Water Res. 39: 4537–4551.

    Article  CAS  Google Scholar 

  20. Utgikar, V. P., S. M. Harmon, N. Chaudhary, H. H. Tabak, R. Govind, and J. R. Haines (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ. Toxicol. 17: 40–48.

    Article  CAS  Google Scholar 

  21. Ramond, J. -B., P. J. Welz, D. A. Cowan, and S. G. Burton (2012) Microbial community structure stability, a key parameter in monitoring the development of constructed wetland mesocosms during start-up. Res. Microbiol. 163: 28–35.

    Article  Google Scholar 

  22. Rodriguez, R. P., G. H. D. Oliveira, I. M. Raimundi, and M. Zaiat (2012) Assessment of a UASB reactor for the removal of sulfate from acid mine water. Int. Biodeterior. Biodegrad. 74: 48–73.

    Article  CAS  Google Scholar 

  23. The non-affiliated soil analysis working committee (1990) Handbook of standard soil methods for advisory purposes. Soil Science Society of South Africa, Pretoria.

    Google Scholar 

  24. Welz, P. J., J. -B. Ramond, A. Prins, D. A. Cowan, and S. G. Burton (2011) Ethanol degradation and the benefits of incremental priming in pilot-scale constructed wetlands. Ecol. Eng. 37: 1453–1460.

    Article  Google Scholar 

  25. Culman, S. W., R. Bukowski, H. G. Gauch, H. Cadillo-Quiroz, and D. H. Buckley (2009) T-REX: Software for the processing and analysis of T-RFLP data. BMC Bioinforma. 10: 171.

    Article  Google Scholar 

  26. Jambor, J. L., J. E. Dutrizac, L. A. Groat, and M. Raudsepp (2002) Static test of neutralization potential of silicate and aluminosilicate minerals. Environ. Geol. 43: 1–17.

    Article  CAS  Google Scholar 

  27. Miller, S. D., W. S. Stewart, Y. Rusdinar, R. E. Schumann, J. M. Ciccarelli, J. Li, and R. St. C. Smart (2010) Methods for estimation of long-term non-carbonate neutralization of acid rock drainage. Sci. Total Environ. 408: 2129–2135.

    Article  CAS  Google Scholar 

  28. Sherlock, E. J., R. W. Lawrence, and R. Poulin (1995) On the neutralization of acid rock drainage by carbonate and silicate minerals. Environ. Geol. 25: 43–54.

    Article  CAS  Google Scholar 

  29. Clarke, K. (1993) Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18: 117–143.

    Article  Google Scholar 

  30. Rodriguez Caballaro, A., J. -B. Ramond, P. J. Welz, D. A. Cowan, M. Odlare, and S. G. Burton (2012) Treatment of high ethanol concentration wastewater in biological sand filters: Enhanced COD removal and bacterial community dynamics. J. Environ. Manag. 109: 54–60.

    Article  Google Scholar 

  31. Welz, P. J., J. -B. Ramond, D. A. Cowan, and S. G. Burton (2012) Phenolic removal processes inbiological sand filters, sand columns and microcosms. Bioresour. Technol. 119: 262–269.

    Article  CAS  Google Scholar 

  32. Giraldi, D., M. de’Michieli Vitturi, M. Zaramella, A. Marion, and R. Iannelli (2009) Hydrodynamics of vertical subsurface flow constructed wetlands: Tracer tests with rhodamine WT amd numerical modelling. Ecol. Eng. 35: 265–273.

    Article  Google Scholar 

  33. Suliman, F., C. Futsaether, U. Oxaal, L. E. Haugen, and P. Jenssen (2006) Effect of the inlet-outlet positions on the hydraulic performance of horizontal subsurface-flow constructed wetlands with heterogenous porous media. J. Contam. Hydrol. 87: 22–36.

    Article  CAS  Google Scholar 

  34. Molle, P., A. Lienard, A. Grasmick, and A. Iwema (2006) Effect of reeds and feeding operations on hydraulic vertical flow constructed wetlands under hydraulic overloads. Water Res. 40: 606–612.

    Article  CAS  Google Scholar 

  35. Serrano, L., D. de la Vargo, I. Ruiz, and M. Soto (2010) Winery wastewater treatment in a hybrid constructed wetland. Ecol. Eng. 37: 744–753.

    Article  Google Scholar 

  36. Carson, C. V., C. Francesca, C. Allessio, B. Cecilia, and T. Luigi (2009) Biological treatment of heavy metals contaminated waters. Chem. Eng. Trans. 17: 203–208.

    Google Scholar 

  37. Gadd, G. M. (2010) Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiol. 156: 609–643.

    Article  CAS  Google Scholar 

  38. Morrison, M. I. and A. C. Aplin (2009) Redox geochemistry in organic-rich sediments of a constructed wetlands treating colliery spoil leachate. Appl. Geochem. 24: 44–51.

    Article  CAS  Google Scholar 

  39. Chapelle, F. H., P. M. Bradley, M. A. Thomas, and P. B. McMahon (2009) Distinguishing iron reducing from sulphate reducing conditions. Ground Water 47: 300–305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Welz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welz, P.J., Ramond, J.B., Cowan, D.A. et al. Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage. Biotechnol Bioproc E 19, 211–220 (2014). https://doi.org/10.1007/s12257-013-0454-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0454-6

Keywords

Navigation