Skip to main content
Log in

Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of ligninolytic enzymes by the fungus Schizophyllum sp. F17 using a cost-effective medium comprised of agro-industrial residues in solid-state fermentation (SSF) was optimized. The maximum activities of the enzymes manganese peroxidase (MnP), laccase (Lac), and lignin peroxidases (LiP) were 1,200, 586, and 109 U/L, respectively, on day 5 of SSF. In vitro decolorization of three structurally different azo dyes by the extracellular enzymes was monitored to determine its decolorization capability. The results indicated that crude MnP, but not LiP and Lac, played a crucial role in the decolorization of azo dyes. After optimization of the dye decolorization system with crude MnP, the decolorization rates of Orange IV and Orange G, at an initial dye concentration of 50 mg/L, were enhanced to 76 and 57%, respectively, after 20 min of reaction at pH 4 and 35°C. However, only 8% decolorization of Congo red was observed. This enzymatic reaction system revealed a rapid decolorization of azo dyes with a low MnP activity of 24 U/L. Thus, this study could be the basis for the production and application of MnP on a larger scale using a low-cost substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torres, E., I. Bustos-Jaimes, and S. L. Borgne (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B: Environ. 46: 1–15.

    Article  CAS  Google Scholar 

  2. Robinson, T., G. McMullan, R. Marchant, and P. Nigam (2001) Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247–255.

    Article  CAS  Google Scholar 

  3. Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011) Bacterial decolorization and degradation of azo dyes: A review. Taiwan. J.Inst. Chem. Eng. 42: 138–157.

    Article  CAS  Google Scholar 

  4. Vandevivere, P. C., R. Bianchi, and W. Verstraete (1998) Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. J. Chem. Technol. Biotechnol. 72: 289–302.

    Article  CAS  Google Scholar 

  5. Saratale, R. G., G. D. Saratale, D. C. Kalyani, J. S. Chang, and S. P. Govindwar (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour. Technol. 100: 2493–2500.

    Article  CAS  Google Scholar 

  6. Zollinger, D. Ph., E. Bulten, A. Christenhusz, M. Bos, and W. E. van der Linden (1987) Computerized conductometric determination of stability constants of complexes of crown ethers with alkali metal salts and with neutral molecules in polar solvents. Anal. Chem. Acta 198: 207–222.

    Article  CAS  Google Scholar 

  7. Chang, J.S., C. Chou, Y. C. Lin, P. J. Lin, J. Y. Ho, and T. L. Hu (2001) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 35: 2841–2850.

    Article  CAS  Google Scholar 

  8. Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2009) Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J. Hazard. Mater. 166: 1421–1428.

    Article  CAS  Google Scholar 

  9. Zhao, X. H. and I. R. Hardin (2007) HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigments. 73: 322–325.

    Article  CAS  Google Scholar 

  10. Chang, J. S. and T. S. Kuo (2000) Kinetics of Bacterial Decolorization of Azo Dye with Escherichia coli NO3. Bioresour. Technol. 75: 107–111.

    Article  CAS  Google Scholar 

  11. Zhang, J., M. Y. Feng, Y. C. Jiang, M. C, Hu. S. Li, and Q. G. Zhai (2012) Efficient decolorization/degradation of aqueous azo dyes using buffered H2O2 oxidation catalyzed by a dosage below ppm level of chloroperoxidase. Chem. Eng. J. 191: 236–242.

    Article  CAS  Google Scholar 

  12. Zollinger, H. (1991) Colour Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. 5th ed., pp. 187. VCH Publishers, Weinheim, Germany.

    Google Scholar 

  13. Zeng, X. K., Y. J. Cai, X. R. Liao, X. L. Zeng, W. X. Li, and D. B. Zhang (2011) Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J. Hazard. Mater. 187: 517–525.

    Article  CAS  Google Scholar 

  14. Rai, H. S., M. S. Bhattacharya, J. Singh, T. K. Bansal, P. Vats, and U. C. Banerjee (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of emerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 35: 219–238.

    Article  CAS  Google Scholar 

  15. Verma, P. and D. Madamwar (2003) Decolorization of Synthetic Dyes by a Newly Isolated Strain of Serratia maerascens. World. J. Microbiol. Biotechnol. 19: 615–618.

    Article  CAS  Google Scholar 

  16. Pointing, S. B. (2001) Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 57: 20–33.

    Article  CAS  Google Scholar 

  17. Wesenberg, D., I. Kyriakides, and S. N. Agathos (2003) Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161–187.

    Article  CAS  Google Scholar 

  18. Radha, K. V., I. Regupathi, A. Arunagiri, and T. Murugesan (2005) Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Proc. Biochem. 40: 3337–3345.

    Article  CAS  Google Scholar 

  19. Singh, S. and K. Pakshirajan (2010) Enzyme activities and decolourization of single and mixed azo dyes by the white-rot fungus Phanerochaete chrysosporium. Int. Biodeterior. Biodegrad. 64: 146–150.

    Article  CAS  Google Scholar 

  20. Heinfling, A., M. Bergbauer, and U. Szewzyk (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolour and Bjerkandera adusta. Appl. Microbiol. Biot. 48: 261–266.

    Article  CAS  Google Scholar 

  21. Kaal, E. E. J., J. A. Field, and T. W. Joyce (1995) Increasing ligninolytic enzyme activities in several white-rot Basidiomycetes by nitrogen-sufficient media. Bioresour. Technol. 2: 133–139.

    Article  Google Scholar 

  22. Leontievsky, A. A., N. M. Myasoedova, and L. A. Golovleva (1994) Production of ligninolytic enzymes of the white rot fungus Panus tigrinus. J. Biotechnol. 3: 299–307.

    Article  Google Scholar 

  23. Couto, S. R. and M. Á. Sanromán (2006) Application of solidstate fermentation to food industry-A review. J. Food. Eng. 76: 291–302.

    Article  CAS  Google Scholar 

  24. Yu, G. C., X. H. Wen, R. Li, and Y. Qian (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Proc. Biochem. 41: 1987–1993.

    Article  CAS  Google Scholar 

  25. Xu, F.J., H. Z. Chen, and Z. Z. Li (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using syeam-exploded straw as substrate. Bioresour. Technol. 80: 149–151.

    Article  CAS  Google Scholar 

  26. Li, X. D. and R. Jia (2008) Decolorization and biosorption for Congo red by system rice hull-Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresour. Technol. 99: 6885–6892.

    Article  CAS  Google Scholar 

  27. Jia, R., B. K. Tang, and X. B. Zhang (2004) Effect of veratryl alcohol and tween-80 ligninase on production and its roles in decolorization of azo dyes by white-rot basidiomycete PM2. Chin.. J. Biotechnol. 20: 302–305.

    CAS  Google Scholar 

  28. Xiao, Y. Z., J. Wang, Y. P. Wang, C. L. Pu, and Y. Y. Shi (2002) Studies on production, purification and partial characteristics of the extracellular laccase from Armilliria mellea. Chin. J. Biotechnol. 18: 457–462.

    CAS  Google Scholar 

  29. Naveena, B. J., M. Altaf, K. Bhadriah, and G. Reddy (2005) Selection of medium components by Plackett-Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol. 96: 485–490.

    Article  CAS  Google Scholar 

  30. Zhou, J. Y., X. J. Yu, C. Ding, Z. P. Wang, Q. Q. Zhou, H. Pao, and W. M. Cai (2011) Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. J. Environ. Sci. 23: 22–30.

    Article  CAS  Google Scholar 

  31. Singh, A., S. Tuteja, N. Singh, and N. R. Bishnoi (2011) Enhanced saccharification of rice straw and hull by microwavealkali pretreatment and lignocellulolytic enzyme production. Bioresour. Technol. 102: 1773–1782.

    Article  CAS  Google Scholar 

  32. Levin, L., F. Forchiassin, and A. Viale (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: Application of the Plackett-Burman experimental design to evaluate nutritional requirements. Proc. Biochem. 40: 1381–1387.

    Article  CAS  Google Scholar 

  33. Cheng, X,B., R, Jia, P. S. Li, S. Q. Tu, Q. Zhu, W. Zh. Tang, and X. D. Li (2007) Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme. Enz. Microb. Tech. 41: 258–264.

    Article  CAS  Google Scholar 

  34. Yang, J. S., H. L. Yuan, H. X. Wang, and W. X. Chen (2005) Purification and characterization of lignin peroxidases from Penicillium decumbens P6. World J. Microb. Biot. 21: 435–440.

    Article  CAS  Google Scholar 

  35. Fakoussa, R. M. and M. Hofrichter (1999) Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biot. 52: 25–40.

    Article  CAS  Google Scholar 

  36. Pricelius, S., C. Held, S. Sollner, S. Deller, M. Murkovic, R. Ullrich, M. Hofrichter, A. Cavaco-Paulo, P. Macheroux, and G. M. Guebitz (2007) Enzymatic reduction and oxidation of fibrebound azo-dyes. Enz. Microb. Tech. 40: 1732–1738.

    Article  CAS  Google Scholar 

  37. Roberge, C., D. Amos, D. Pollard, and P. Devine (2009) Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance. J. Mol. Catal. B: Enz. 56: 41–45.

    Article  CAS  Google Scholar 

  38. Park, J. B. and D. S. Clark (2006) Deactivation mechanisms of chloroperoxidase during biotransformations. Biotechnol. Bioeng. 93: 1190–1195.

    Article  CAS  Google Scholar 

  39. Pazarlioglu, N. K., R. O. Urek, and F. Ergun (2005) Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium. Proc. Biochem. 40: 1923–1929.

    Article  CAS  Google Scholar 

  40. Parshetti, G. K., S. D. Kalme, S. S. Gomare, and S. P. Govindwar (2007) Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresour. Technol. 98: 3638–3642.

    Article  CAS  Google Scholar 

  41. Kaushik, P. and A. Malik (2009) Fungal dye decolourization: Recent advances and future potential. Environ. Int. 35: 127–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Jia, R., Zheng, L. et al. Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol Bioproc E 18, 868–877 (2013). https://doi.org/10.1007/s12257-013-0357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0357-6

Keywords

Navigation