Skip to main content
Log in

Deciphering the factors responsible for the stability of a GFP variant resistant to alkaline pH using molecular dynamics simulations

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Charged amino acids having ionizable side chains play crucial roles in maintaining the solubility and stability of a protein. These charged amino acids are mostly exposed on protein surface and participate in electrostatic interactions with neighboring charged amino acids as well as with solvent. Therefore, the change in the solvent pH affects the protein stability in most cases. Previously, we reported a GFP variant, GFP14R having 14 surface lysines replaced with arginines, that showed enhanced stability under alkaline pH. Here, we analyzed the factors that contribute to the stability of the GFP14R under alkaline pH quantitatively using molecular dynamics simulations. Protonation state of the charged amino acids of GFP14R and control GFP under neutral pH and alkaline pH were modeled, and molecular dynamics simulations were performed. This comparative analysis revealed that the GFP14R with more arginine frequency on the surface maintained the stability under both pH conditions without much change in their salt-bridge interactions as well as the hydrogen bond interactions with solvent. On the other hand, these interactions were significantly reduced for the control GFP under alkaline pH due to the deprotonated lysine side chains. These results suggest that the advantageous property of arginine over lysine can be considered one of the parameter for the protein stability engineering under alkaline pH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pace, C. N., G. R. Grimsley, and J. M. Scholtz (2009) Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 284: 13285–13289.

    Article  CAS  Google Scholar 

  2. Trevino, S. R., J. M. Scholtz, and C. N. Pace (2007) Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J. Mol. Biol. 366: 449–460.

    Article  CAS  Google Scholar 

  3. Pace, C. N., D. V. Laurents, and J. A. Thomson (1990) pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochem. 29: 2564–2572.

    Article  CAS  Google Scholar 

  4. Schweiker, K. L., A. Zarrine-Afsar, A. R. Davidson, and G. I. Makhatadze (2007) Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge charge interactions. Protein Sci. 16: 2694–2702.

    Article  CAS  Google Scholar 

  5. Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito (2007) Detergent alkaline proteases: Enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 103: 501–508.

    Article  CAS  Google Scholar 

  6. Kumar, C. G. and H. Takagi (1999) Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561–594.

    Article  CAS  Google Scholar 

  7. Gulich, S., M. Linhult, S. Stahl, and S. Hober (2002) Engineering streptococcal protein G for increased alkaline stability. Protein Eng. 15: 835–842.

    Article  Google Scholar 

  8. Asplund, M., M. Ramberg, and B. -L. Johansson (2000) Development of a cleaning in place protocol and repetitive application of Escherichia coli homogenate on STREAMLINE™ Q XL. Proc. Biochem. 35: 1111–1118.

    Article  CAS  Google Scholar 

  9. Cunningham, B. C. and J. A. Wells (1987) Improvement in the alkaline stability of subtilisin using an efficient random mutagenesis and screening procedure. Protein Eng. 1: 319–325.

    Article  CAS  Google Scholar 

  10. Sokalingam, S., G. Raghunathan, N. Soundrarajan, and S. -G. Lee (2012) A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS One. 7: e40410.

    Article  CAS  Google Scholar 

  11. Hess, B., C. Kutzner, D. van der Spoel, and E. Lindahl (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4: 435–447.

    Article  CAS  Google Scholar 

  12. P.Cormack, B., R. H. Valdivia, and S. Falkow (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.

    Article  Google Scholar 

  13. Huang, J. -R., S. -T. D. Hsu, J. Christodoulou, and S. E. Jackson (2008) The extremely slow-exchanging core and acid-denatured state of green fluorescent protein. HFSP J. 2: 378–387.

    Article  CAS  Google Scholar 

  14. Yang, F., L. G. Moss, and G. N. Phillips (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol. 14: 1246–1251.

    Article  CAS  Google Scholar 

  15. Petukhov, M., D. Cregut, C. M. Soares, and L. Serrano (1999) Local water bridges and protein conformational stability. Protein Sci. 8: 1982–1989.

    Article  CAS  Google Scholar 

  16. Mattos, C. (2002) Protein-water interactions in a dynamic world. Trends Biochem. Sci. 27: 203–208.

    Article  CAS  Google Scholar 

  17. Steinbach, P. J. and B. R. Brooks (1993) Protein hydration elucidated by molecular dynamics simulation. Proc. Natl. Acad. Sci. U.S.A. 90: 9135–9139.

    Article  CAS  Google Scholar 

  18. Lau, E. Y., J. L. Phillips, and M. E. Colvin (2009) Molecular dynamics simulations of highly charged green fluorescent proteins. Mol. Phys. 107: 1233–1241.

    Article  CAS  Google Scholar 

  19. Matysiak, S., P. G. Debenedetti, and P. J. Rossky (2012) Role of hydrophobic hydration in protein stability: A 3D water-explicit protein model exhibiting cold and heat denaturation. J. Phys. Chem. B. 116: 8095–8104.

    Article  CAS  Google Scholar 

  20. Chakraborty, S. and S. Bandyopadhyay (2007) Correlation between the dynamics of hydrogen bonds and the local density reorganization in the protein hydration layer. J. Phys. Chem. B. 111: 7626–7630.

    Article  CAS  Google Scholar 

  21. Kuffel, A. and J. Zielkiewicz (2012) The importance of the shape of the protein-water interface of a kinesin motor domain for dynamics of the surface atoms of the protein. Phys. Chem. Chem. Phys. 14: 5561–5569.

    Article  CAS  Google Scholar 

  22. Adrover, M., G. Martorell, S. R. Martin, D. Urosev, P. V. Konarev, D. I. Svergun, X. Daura, P. Temussi, and A. Pastore (2012) The role of hydration in protein stability: Comparison of the cold and heat unfolded states of Yfh1. J. Mol. Biol. 417: 413–424.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokalingam, S., Madan, B., Raghunathan, G. et al. Deciphering the factors responsible for the stability of a GFP variant resistant to alkaline pH using molecular dynamics simulations. Biotechnol Bioproc E 18, 858–867 (2013). https://doi.org/10.1007/s12257-013-0309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0309-1

Keywords

Navigation