Skip to main content
Log in

Nitrosomonas sp. Based biosensor for ammonium nitrogen measurement in wastewater

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A bacterial culture of Nitrosomonas sp. was isolated from a nitrifying biofilm to construct a biosensor for ammonium nitrogen (NH +4 −N) measurements in high ammonia wastewaters. The pure culture of microorganisms was immobilized into agarose gel matrix to attain a stable biosensor with a long service life. Biosensors were calibrated using (NH4)2SO4 solution and a steady-state method. Subsequently, several experiments with synthetic and industrial wastewaters were conducted. A linear range up to 20 mg/L of NH +4 −N, and sensitivities between 0.030 and 0.036 were gained with biosensors. During 14 days of stable service life of the Nitrosomonas sp. biosensors, variation of the signal was less than 7%. Response times of biosensors were 15 ∼ 25 min, while recovery times were up to 25 min. Measurements with high ammonia content synthetic and industrial wastewaters were conducted, and 8.3 and 5.6% over estimation of NH +4 −N was gained, respectively, compared with results of Nessler method. In spite of the small overestimation, the biosensor based on a pure culture of Nitrosomonas sp. and calibrated with (NH4)2SO4 is suitable for the analysis of NH +4 −N in high ammonia content wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, L., S. Yuan, J. Chen, Z. Xu, and X. Lu (2009) Removal of ammonia nitrogen in wastewater by microwave radiation. J. Hazard. Mater. 161: 1063–1068.

    Article  CAS  Google Scholar 

  2. Schmidt, I., O. Sliekers, M. Schmid, E. Bock, J. Fuerst, J. G. Kuenen, M. S. M. Jetten, and M. Strous (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 27: 481–492.

    Article  CAS  Google Scholar 

  3. Xinshan, S., L. Qin, and Y. Denghua (2010) Nutrient removal by hybrid subsurface flow constructed wetlands for high concentration ammonia nitrogen wastewater. Procedia Environ. Sci. 2: 1461–1468.

    Article  Google Scholar 

  4. Timmer, B., W. Olthuis, and A. V. D. Berg (2005) Ammonia sensors and their applications—a review. Sens. Actuators B. 107: 666–677.

    Article  CAS  Google Scholar 

  5. Thévenot, D. R., K. Toth, R. A. Durst, and G. S. Wilson (2001) Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 16: 121–131.

    Article  Google Scholar 

  6. D’Souza, S. F. (2001) Microbial biosensors. Biosens. Bioelectron. 16: 337–353.

    Article  Google Scholar 

  7. Raud, M., E. Linde, E. Kibena, S. Velling, T. Tenno, E. Talpsep, and T. Kikas (2010) Semi-specific biosensors for measuring BOD in dairy wastewater. J. Chem. Technol. Biotechnol. 85: 957–961.

    Article  CAS  Google Scholar 

  8. Raud, M., T. Tenno, E. Jõgi, and T. Kikas (2012) Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters. Enz. Microbial. Technol. 50: 221–226.

    Article  CAS  Google Scholar 

  9. Liu, J. and B. Mattiasson (2002) Microbial BOD sensors for wastewater analysis. Water Res. 36: 3786–3802.

    Article  CAS  Google Scholar 

  10. Raud, M., M. Tutt, E. Jõgi, and T. Kikas (2012) BOD biosensors for pulp and paper industry wastewater analysis. Environ. Sci. Poll. Res. 19: 3039–3045.

    Article  CAS  Google Scholar 

  11. Dubey, R. S. and S. N. Upadhyay (2001) Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosens. Bioelectron. 16: 995–1000.

    Article  CAS  Google Scholar 

  12. Orupõld, K., A. Mashirin, and T. Tenno (1995) Amperometric phenol sensor with immobilized bacteria. Electroanal. 7: 904–906.

    Article  Google Scholar 

  13. Yüce, M., H. Nazır, and G. Dönmez (2010) A voltammetric Rhodotorula mucilaginosa modified microbial biosensor for Cu(II) determination. Bioelectrochem. 79: 66–70.

    Article  Google Scholar 

  14. Eltzov, E., R. S. Marks, S. Voost, B. A. Wullings, and M. B. Heringa (2009) Flow-through real time bacterial biosensor for toxic compounds in water. Sens. Actuators B. 142: 11–18.

    Article  CAS  Google Scholar 

  15. Bollmann, A. and N. P. Revsbech (2005) An NH4+ biosensor based on ammonia-oxidizing bacteria for use under anoxic conditions. Sens. Actuators B. 105: 412–418.

    Article  CAS  Google Scholar 

  16. Dong, N. M., N. Risgaard-Petersen, J. Sørensen, and K. K. Brandt (2010) Rapid and sensitive nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil. Environ. Sci. Technol. 45: 1048–1054.

    Article  CAS  Google Scholar 

  17. Grunditz, C. and G. Dalhammar (2001) Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Res. 35: 433–440.

    Article  CAS  Google Scholar 

  18. Cui, R., W. -J. Chung, and D. Jahng (2005) A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation. Biosens. Bioelectron. 20: 1788–1795.

    Article  CAS  Google Scholar 

  19. Su, L., W. Jia, C. Hou, and Y. Lei (2011) Microbial biosensors: A review. Biosens. Bioelectron. 26: 1788–1799.

    Article  CAS  Google Scholar 

  20. Hsieh, Y. L., S. K. Tseng, and Y. J. Chang (2002) Nitrification using polyvinyl alcohol-immobilized nitrifying biofilm on an O_2-enriching membrane. Biotechnol. Lett. 24: 315–319.

    Article  CAS  Google Scholar 

  21. Lagarde, F. and N. Jaffrezic-Renault (2011) Cell-based electrochemical biosensors for water quality assessment. Anal. Bioanal. Chem. 400: 947–964.

    Article  CAS  Google Scholar 

  22. Tokuyama, T., A. Mine, K. Kamiyama, R. Yabe, K. Satoh, H. Matsumoto, R. Takahashi, and K. Itonaga (2004) Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant. J. Biosci. Bioeng. 98: 309–312.

    CAS  Google Scholar 

  23. Tomiyama, H., M. Ohshima, S. Ishii, K. Satoh, R. Takahashi, K. Isobe, H. Iwano, and T. Tokuyama (2001) Characteristics of newly isolated nitrifying bacteria from rhizoplane of paddy rice. Microb. Environ. 16: 101–108.

    Article  Google Scholar 

  24. Satoh, K., R. Takizawa, M. Sarai, N. Sato, R. Takahashi, and T. Tokuyama (2004) Two kinds of ammonia-oxidizing bacteria isolated from biologically deodorizing plants in cold district. J. Biosci. Bioeng. 98: 207–210.

    CAS  Google Scholar 

  25. Kibena, E., M. Raud, E. Jõgi, and T. Kikas (2013) Semi-specific M. phyllosphaerae based microbial sensor for biochemical oxygen demand measurements in dairy wastewater. Environ. Sci. Poll. Res. 20: 2492–2498.

    Article  CAS  Google Scholar 

  26. Chan, C., M. Lehmann, K. Chan, P. Chan, C. Chan, B. Gruendig, G. Kunze, and R. Renneberg (2000) Designing an amperometric thick-film microbial BOD sensor. Biosens. Bioelectron. 15: 343–353.

    Article  CAS  Google Scholar 

  27. König, A., K. Riedel, and J. W. Metzger (1998) A microbial sensor for detecting inhibitors of nitrification in wastewater. Biosens. Bioelectron. 13: 869–874.

    Article  Google Scholar 

  28. König, A., T. T. Bachmann, J. W. Metzger, and R. D. Schmid (1999) Disposable sensor for measuring the biochemical oxygen demand for nitrification and inhibition of nitrification in wastewater. Appl. Microbiol. Biotechnol. 51: 112–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin Raud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raud, M., Lember, E., Jõgi, E. et al. Nitrosomonas sp. Based biosensor for ammonium nitrogen measurement in wastewater. Biotechnol Bioproc E 18, 1016–1021 (2013). https://doi.org/10.1007/s12257-013-0078-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0078-x

Keywords

Navigation