Skip to main content

Advertisement

Log in

Improvement of the steroid dihydroxylation efficiency from dehydroepiandrosterone using a substrate pre-induction biotransformation process

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effects of hydroxylase cyptochrome P450 inducers on the efficiency of the biotransformation of dehydroepiandrosterone (DHEA) to 3β, 7α, 15α-trihydroxy-5-androsten-17-one (7α,15α-diOHDHEA) by Colletotrichum lini ST-1. Special attention was given to the substrate DHEA being the best inducer and the fact that it could improve the yield of 7α, 15α-diOHDHEA. Based on the effects of the DHEA pre-induction phases and additional concentrations on 7α, 15α-diOHDHEA production, a substrate pre-induction process was established as follows: 2 g/L DHEA was added for the first time after 12 h of inoculation, followed by the second addition of 6 g/L DHEA after 12 h later. The results showed that this substrate pre-induction process improved the content of cytochrome P450 and that the 7α, 15α-diOH-DHEA yield reached 90.1%, which was 26.9% higher than that obtained in the original process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donova, M. V. and O. V. Egorova (2012) Microbial steroid transformations: Current state and prospects. Appl. Microbiol. Biotechnol. 94: 1423–1447.

    Article  CAS  Google Scholar 

  2. Pollard, D. J. and M. J. Woodley (2006) Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 25: 66–73.

    Article  Google Scholar 

  3. Mahato, S. B. and S. Garai (1997) Advances in microbial steroid biotransformation. Steroids 62: 332–345.

    Article  CAS  Google Scholar 

  4. Marques, M. P. C., F. Carvalho, C. C. C. R. de Carvalho, J. M. S. Cabral, and P. Femandes (2010) Steroid bioconversion: Towards green processes. Food Bioprod. Proc. 88:12–20.

    Article  CAS  Google Scholar 

  5. Kolek, T., N. Milecka, A. Swizdor, A. Panek, and A. Bialonska (2011) Hydroxylation of DHEA, androstenediol and epiandrosterone by Mortierella isabellina AM212. Evidence indicating that both constitutive and inducible hydroxylases catalyze 7α-as well as 7β-hydroxylations of 5-ene substrates. Org. Biomol. Chem. 9: 5414–5422.

    Article  CAS  Google Scholar 

  6. Lobastova, T. G., S. A. Gulevskaya1, G. V. Sukhodolskaya1, K. F. Turchin, and M. V. Donova1 (2007) Screening of mycelial fungi for 7α- and 7β-hydroxylase activity towards dehydroepiandrosterone. Biocatal. Biotransform. 25: 434–442.

    Article  CAS  Google Scholar 

  7. Romano, A., D. Romano, E. Ragg, F. Costantino, L. Roberto, R. Gandolfid, and F. Molinari (2006) Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Steroids 71: 429–434.

    Article  CAS  Google Scholar 

  8. Bernhardt, R. (2006) Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 24: 128–145.

    Article  Google Scholar 

  9. Andriushina, V. G., A. V. Druzhinina, V. V. Iaderets, T. S. Stytsenko, and N. E. Voishvillo (2010) 7α-Hydroxylation of steroid 5α-olefins by mold fungi. Appl. Biochem. Microbiol. 46: 69–74.

    Article  Google Scholar 

  10. Mutafov, S., B. Angelova, T. Avramova, L. Boyadjieva, and I. Dimova (1997) The inducibility of 9α-steroid hydroxylating activity in resting Rhodococcus sp. cells. Proc. Biochem. 32: 585–589.

    Article  CAS  Google Scholar 

  11. Carballeira, J. D., M. A. Quezada, P. Hoyos, Y. Simeo, M. J. Hernaiz, A. R. Alcantara, and J. V. Sinisterra (2009) Microbial cells as catalysts for stereo selective redox reactions. Biotechnol. Adv. 27:686–714.

    Article  CAS  Google Scholar 

  12. Ahmed, E. M. (2007) Production of 11α-hydroxyprogesterone using Aspergillus terreus immobilized on polytetrafluoroethylene. Braz. J. Microbiol. 38: 224–229.

    Article  Google Scholar 

  13. Shen, Y. J., H. Sun, Y. W. Fu, C. Y. Xu, and M. Wang (2012) Progesterone hydroxylation with Colletotrichum lini AS3. 4486. Adv. Mat. Res. 343–344: 1070–1073.

    Google Scholar 

  14. Smith, K. E., F. Ahmed, R. A. Williams, and S. L. Kelly (1994) Microbial transformations of steroids-VIII. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus. J. Steroid Biochem. Mol. Biol. 49: 93–100.

    Article  CAS  Google Scholar 

  15. Lu, W. Y., L. X. Du, M. Wang, J. P. Wen, B. Sun, and Y. W. Guo (2006) Effect of two-steps substrate addition on steroids 11α-hydroxylation by Curvularia lunata CL-114. Biochem. Eng. J. 32: 233–238.

    Article  CAS  Google Scholar 

  16. Andryushina, V. A., A. V. Druzhinina, V. V. Yaderets, T. S. Stytsenko, and N. E. Voishvillo (2011) Hydroxylation of steroids by Curvularia lunata mycelium in the presence of methyl-β-cyclodextrine. Appl. Biochem. Microbiol. 47: 42–48.

    Article  Google Scholar 

  17. Chen, K. C. and H. C. Wey (1990) 11β-Hydroxylation of coxtexolone by Curvularia lunata. Enz. Microb. Technol. 12: 305–308.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Xu.

Additional information

These authors had equal contributions to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Fu, Z., Li, H. et al. Improvement of the steroid dihydroxylation efficiency from dehydroepiandrosterone using a substrate pre-induction biotransformation process. Biotechnol Bioproc E 18, 486–490 (2013). https://doi.org/10.1007/s12257-012-0828-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0828-1

Keywords

Navigation