Skip to main content
Log in

Human serum promotes the proliferation but not the stemness genes expression of human adipose-derived stem cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently human adipose-derived stem cells (ASCs) have shown much therapeutic potential in regenerative medicine. However, fetal bovine serum (FBS) used in culturing human cells may give risk to viral and prion transmission as well as immune rejection. Human serum (HS) is a safer growth supplement in human cell culture but its effects have not been well established. Therefore the objectives of this study were to compare the effects of HS versus FBS on the proliferation and stemness gene expression of ASCs. ASCs were cultured for 5 passages in medium supplemented with either 10% HS or 10% FBS. ASCs proliferation rate and viability were determined at every passage. Total RNA was extracted at passage 5 (P5) and quantitative PCR was carried out to determine the stemness gene expression level of SOX-2, Nanog3, BST-1, REX-1, ABCG2 and FGF-4. The results showed ASC cultured in 10% HS scored greater proliferation rates and viability compared to 10% FBS. ASCs proliferated significantly faster in 10% HS compared to 10% FBS at P2, P3, and P4 (p < 0.05). In quantitative gene expression analysis, ASCs cultured in 10% FBS showed a significant increase of BST-1, REX-1 and ABCG2 expression compared to 10% HS. In conclusion, HS promotes ASCs proliferation and viability but its ability to support the stemness property of ASCs was inferior to FBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davila, J. C., G. G. Cezar, M. Thiede, S. Strom, T. Miki, and J. Trosko (2004) Use and application of stem cells in toxicology. J. Toxicol. Sci. 79: 214–223.

    Article  CAS  Google Scholar 

  2. Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13: 4279–4295.

    Article  CAS  Google Scholar 

  3. Mizuno, H. and H. Hyakusoku (2003) Review: Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J. Nippon. Med. Sch. 70: 300–306.

    Article  Google Scholar 

  4. Schremi, S., P. Babilas, S. Fruth, E. Orso, G. Schmitz, M. B. Mueller, M. Nerlich, and L. Prantl (2009) Harvesting human adi pose tissue-derived adult stem cells: Resection versus liposuction. Cytotherapy. 11: 947–957.

    Article  Google Scholar 

  5. Wan Safwani, W. K. Z., S. Makpol, S. Sathapan, and K. H. Chua (2011) The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation. Biotech. Appl. Biochem. 58: 261–270.

    Article  Google Scholar 

  6. Hamid, A. A., R. Idrus, A. Saim, S. Sathappan, and K. H. Chua (2012) Characterisation of human adipose derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics. 67: 99–106.

    Article  Google Scholar 

  7. Kassem, M., M. Kristiansen, and B. M. Abdallah (2004) Mesenchymal stem cells: Cell biology and potential use in therapy. Basic Clin. Pharmacol. Toxicol. 95: 209–214.

    Article  CAS  Google Scholar 

  8. Garcia-Olmo, D., D. Herreros, I. Pascual, J. A. Pascual, E. Del-Valle, J. Zorrilla, P. De-La-Quintana, M. Garcia-Arranz, and M. Pascual (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: A phase II clinical trial. Dis. Colon. Rectum. 52: 79–86.

    Article  Google Scholar 

  9. Stillaert, F. B., C. Di Bartolo, J. A. Hunt, N. P. Rhodes, E. Tognana, S. Monstrey, and P. N. Blondeel (2008) Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds. Biomat. 29: 3953–3959.

    Article  CAS  Google Scholar 

  10. Katz, A. J., R. Lull, M. H. Hedrick, and J. W. Futrell (1999) Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 26: 587–603.

    CAS  Google Scholar 

  11. Bray, G. A. (2004) Medical consequences of obesity. J. Clin. Endocrinol. Metab. 89: 2583–2589.

    Article  CAS  Google Scholar 

  12. Gimble, J. M., A. J. Katz, and B. A. Bunnell (2007) Review: Adipose- derived stem cells for regenerative medicine. Circ. Res. 100: 1249–1260.

    Article  CAS  Google Scholar 

  13. Mackensen, A., R. Drager, M. Schlesier, R. Mertelsmann, and A. Lindemann (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cell. Cancer Immunol. Immunother. 49: 152–156.

    Article  CAS  Google Scholar 

  14. Tuschong, L., S. L. Soenen, R. M. Blaese, F. Candotti, and L. M. Muul (2002) Immune response to fetal calf serum by two adenosine deaminase deficient patients after T cell gene therapy. Hum. Gene Ther. 13: 1605–1610.

    Article  CAS  Google Scholar 

  15. Spees, J. L., C. A. Gregory, H. Singh, H. A. Tucker, A. Peister, P. J. Lynch, S. C. Hsu, J. Smith, and D. J. Prockop (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther. 9: 747–756.

    Article  CAS  Google Scholar 

  16. Shahdadfar, A., K. Fronsdal, T. Haug, F. P. Reinholt, and J. E. Brinchmann (2005) In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 23: 1357–1366.

    Article  CAS  Google Scholar 

  17. Kim, S. J., H. H. Cho, Y. J. Kim, S. Y. Seo, H. N. Kim, J. B. Lee, J. H. Kim, J. S. Chung, and J. S. Jung (2005) Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochem. Biophys. Res. Commun. 329: 25–31.

    Article  CAS  Google Scholar 

  18. Cai, J., M. I. Weiss, and M. S. Rao (2004) In search of “stemness”. Exp. Hematol. 32: 585–598.

    Article  Google Scholar 

  19. Shi, W., H. Wang, G. Pan, Y. Geng, Y. Guo, and D. Pei (2006) Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J. Biol. Chem. 281: 23319–23325.

    Article  CAS  Google Scholar 

  20. Heydarkhan-Hagvall, S., K. Schenke-Layland, J. Q. Yang, S. Heydarkhan, Y. P. A. Zuk, W. R. MacLellan, and R. E. Beygui (2008) Human adipose stem cells: A potential cell source for cardiovascular tissue engineering. Cells Tissues Organs. 187: 263–274.

    Article  Google Scholar 

  21. Chua, K. H., B. S. Aminuddin, N. H. Fuzina, and B. H. I. Ruszymah (2005) Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur. Cell Mater. 9: 58–67.

    CAS  Google Scholar 

  22. Chua, K. H., B. S. Aminuddin, N. H. Fuzina, and B. H. I. Ruszymah (2007) Basic fibroblast growth factor with human serum supplementation: Enhancement of human chondrocytes proliferation and promotion of cartilage regeneration. Singapore Med. J. 48: 324–332.

    CAS  Google Scholar 

  23. Turnovcova, K., K. Ruzickova, V. Vanecek, E. Sykova, and P. Jendelova (2009) Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy. 11: 874–885.

    Article  CAS  Google Scholar 

  24. Poloni, A., G. Maurizi, V. Rosini, E. Mondini, S. Mancini, G. Discepoli, S. Biasio, G. Battaglini, S. Felicetti, E. Berardinelli, F. Serrani, and P. Leoni (2009) Selection of CD271(+) cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy. 11: 153–162.

    Article  CAS  Google Scholar 

  25. Kocaoemer, A., S. Kern, H. Kluter, and K. Bleback (2007) Human AB serum and Thrombin-activated platlet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells for adipose tissue. Stem Cells 25: 1270–1278.

    Article  CAS  Google Scholar 

  26. Wan Safwani, W. K. Z., S. Makpol, S. Sathapan, and K. H. Chua (2012) The impact of long-term in vitro expansion on the senescence- associated markers of human adipose-derived stem cells. Appl. Biochem. Biotechnol. 166: 2101–2113.

    Article  Google Scholar 

  27. Wan Safwani, W. K. Z., S. Makpol, S. Sathapan, and K. H. Chua (2012) Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenecity. J. Tissue Eng. Regen. Med. DOI: 10.1002/term.1501.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chua Kien Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, C.K., Safwani, W.K.Z.W., Chin, S.S. et al. Human serum promotes the proliferation but not the stemness genes expression of human adipose-derived stem cells. Biotechnol Bioproc E 17, 1306–1313 (2012). https://doi.org/10.1007/s12257-012-0354-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0354-1

Keywords

Navigation