Skip to main content
Log in

Production of β-carotene and acetate in recombinant Escherichia coli with or without mevalonate pathway at different culture temperature or pH

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Natural β-carotene has received much attention as consumers have become more health conscious. Its production by various microorganisms including metabolically engineered Escherichia coli or Saccharomyces cerevisiae has been attempted. We successfully created a recombinant E. coli with an engineered whole mevalonate pathway in addition to β-carotene biosynthetic genes and evaluated the engineered cells from the aspects of metabolic balance between central metabolism and β-carotene production by comparison with conventional β-carotene producing recombinant E. coli (control) utilizing a native methylerythritol phosphate (MEP) pathway using bioreactor cultures generated at different temperatures or pHs. Better production of β-carotene was obtained in E. coli cultured at 37°C than at 25°C. A two-fold higher titer and 2.9-fold higher volumetric productivity were obtained in engineered cells compared with control cells. Notably, a marginal amount of acetate was produced in actively growing engineered cells, whereas more than 8 g/L of acetate was produced in control cells with reduced cell growth at 37°C. The data indicated that the artificial operon of the whole mevalonate pathway operated efficiently in redirecting acetyl-CoA into isopentenyl pyrophosphate (IPP), thereby improving production of β-carotene, whereas the native MEP pathway did not convert a sufficient amount of pyruvate into IPP due to endogenous feedback regulation. Engineered cells also produced lycopene with a reduced amount of β-carotene in weak alkaline cultures, consistent with the inhibition of lycopene cyclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burri, B. J. (1997) Beta-carotene and human health: A review of current research. Neutri. Res. 17: 547–580.

    Article  CAS  Google Scholar 

  2. Jaramillo-Flores, M. E., J. J. Lugo-Martinez, E. Ramirez-Sanjuan, H. Montellano-Rosales, L. Dorantes-Alvarez, and H. Hernandez-Sanchez (2005) Effect of sodium chloride, acetic acid, and enzymes on carotene extraction in carrots (Daccus carota L.). J. Food Sci. 70: 136–142.

    Article  Google Scholar 

  3. Garcia-Gonzalez, M., J. Moreno, J. C. Manzano, F. J. Florencio, and M. G. Guerrero (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J. Biotechnol. 115: 81–90.

    Article  CAS  Google Scholar 

  4. Kim, S. -W., J. -B. Kim, W. -H. Jung, J. -H. Kim, and J. -K. Jung (2006) Over-production of β-carotene from metabolically engineered Escherichia coli. Biotechnol. Lett. 28: 897–904.

    Article  CAS  Google Scholar 

  5. Mantzouridou, F., T. Roukas, and P. Kotzekidou (2005) Production of beta-carotene from synthetic medium by Blakeslea trispora in fed-batch culture. Food Biotechnol. 18: 343–361.

    Article  Google Scholar 

  6. Malisorn, C. and W. Suntornsuk (2008) Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Biores. Technol. 99: 2281–2287.

    Article  CAS  Google Scholar 

  7. Saenge, C., B. Cheirsilp, T. T. Suksaroge, and T. Bourtoom (2011) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol. Bioproc. Eng. 16: 23–33.

    Article  CAS  Google Scholar 

  8. Verwaal, R., J. Wang, J. -P. Meijnen, H. Visser, G. Sandmann, J. A. V. D. Berg, and A. J. J. V. Ooyen (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 73: 4342–4350.

    Article  CAS  Google Scholar 

  9. Yoon, S. -H, S. -H. Lee, A. Das, H. -K. Ryu, H. -J. Jang, J. -Y. Kim, D. -K. Oh, J. D. Keasling, and S. -W. Kim (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J. Biotechnol. 140: 218–226.

    Article  CAS  Google Scholar 

  10. Kim, J. H., S. -W. Kim, D. Q. A. Nguyen, H. Li, S. B. Kim, Y. -G. Seo, J. -K. Yang, I. -Y. Chung, D. H. Kim, and C. -J. Kim (2009) Production of β-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures. Biotechnol. Bioproc. Eng. 14: 559–564.

    Article  CAS  Google Scholar 

  11. Das, A., S. -H. Yoon, S. -H. Lee, J. -Y. Kim, D. -K. Oh, and S. -W. Kim (2007) An update on microbial carotenoid production: Application of recent metabolic engineering tools. Appl. Micro-biol. Biotechnol. 77: 505–512.

    Article  CAS  Google Scholar 

  12. Eiteman, M. A. and E. Altman (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530–536.

    Article  CAS  Google Scholar 

  13. Selvarasu, S., D. S. -W. Ow, S. Y. Lee, M. M. Lee, S. K. -W. Oh, I. A. Karimi, and D. -Y. Lee (2009) Characterizing Escherichia coli DH5α growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnol. Bioeng. 102: 923–934.

    Article  CAS  Google Scholar 

  14. Vemuri, G. N., T. A. Mining, E. Altman, and M. A. Eiteman (2005) Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnol. Bioeng. 90: 64–76.

    Article  CAS  Google Scholar 

  15. Won, W., C. Park, C. Park, S. Y. Lee, K. S. Lee, and J. Lee (2011) Parameter estimation and dynamic control analysis of central carbon metabolism in Escherichia coli. Biotechnol. Bioproc. Eng. 16: 216–228.

    Article  CAS  Google Scholar 

  16. Martin, V. J. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802.

    Article  CAS  Google Scholar 

  17. Pitera, D. J., C. J. Paddon, J. D. Newman, and J. D. Keasling (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9: 193–207.

    Article  CAS  Google Scholar 

  18. Sambrook, J. and D. W. Russel (2010) Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  19. Schierle, J., B. Pietsch, A. Ceresa, and C. Fizet (2004) Method for the determination of β-carotene in supplements and raw materials by reversed-phase liquid chromatography: Single laboratory validation. J. AOAC Int. 87: 1070–1082.

    CAS  Google Scholar 

  20. Torrecilla, J. S., M. Camara, V. Fernandez-Ruiz, G. Piera, and J. O. Caceres (2008) Solving the spectroscopy interference effects of β-carotene and lycopene by neural networks. J. Agric. Food. Chem. 56: 6261–6266.

    Article  CAS  Google Scholar 

  21. Sandmann, G., M. Albrecht, G. Schnurr, O. Knorzer, and P. Boger (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol. 17: 233–237.

    Article  CAS  Google Scholar 

  22. Vemuri, G. N., E. Altman, D. P. Sangurdekar, A. B. Khodursky, and M. A. Eiteman (2006) Overflow metabolism in Escherichia coli during steady-state growth: Transcriptional regulation and effect of redox ratio. Appl. Env. Microbiol. 72: 3653–3661.

    Article  CAS  Google Scholar 

  23. Mey, M. D., S. D. Maeseneire, W. Soetaert, and E. Vandamme (2007) Minimizing acetate formation in E. coli fermentations. J. Ind. Microbiol. Biotechnol. 34: 689–700.

    Article  Google Scholar 

  24. Roe, A. J., C. O’Byrns, D. Mclaggan, and I. R. Booth (2002) Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocystein toxicity. Microbiol. 148: 2215–2222.

    CAS  Google Scholar 

  25. Warnecke, T. and R. T. Gill (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25.

    Article  Google Scholar 

  26. Raja, N., M. Goodson, D. G. Smith, and R. J. Rowbury (1991) Decrease DNA damage by acid and increased repair of aciddamaged DNA in acid-habituated Escherichia coli. J. Appl. Bacteriol. 70: 507–511.

    Article  CAS  Google Scholar 

  27. Tabata, K. and S. -I. Hashimoto (2004) Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnol. Lett. 26: 1487–1491.

    Article  CAS  Google Scholar 

  28. Dahlgren, M. E., A. L. Powell, R. L. Greasham, and H. A. George (1993) Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: Acid metabolites in shake flasks and stirred bioreactors. Biotechnol. Prog. 9: 580–586.

    Article  CAS  Google Scholar 

  29. Soini, J., K. Ukkonen, and P. Neubauer (2008) High cell density media for Escherichia coli are generally designed for aerobic cultivations-consequences for large-scale bioprocesses and shake flask cultures. Microb. Cell Fact. 7: 26.

    Article  Google Scholar 

  30. Anguelova, T. and J. Warthesen (2000) Lycopene stability in tomato powders. J. Food. Sci. 65: 67–70.

    Article  CAS  Google Scholar 

  31. Stancik, L. M., D. M. Stancik, B. Schmidt, D. M. Barnhart, Y. N. Yoncheva, and J. L. Slonczewski (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184: 4246–4258.

    Article  CAS  Google Scholar 

  32. Krulwich, T. A., G. Sachs, and E. Padan (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Micro. 9: 330–343.

    Article  CAS  Google Scholar 

  33. Zilberstein, D., V. Agmon, S. Schuldiner, and E. Padan (1984) Escherichia coli intracellular pH, membrane potential, and cell growth. J. Bacteriol. 158: 246–252.

    CAS  Google Scholar 

  34. Alper, H., K. Miyaoku, and G. Stephanopoulos (2006) Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl. Microbiol. Biotechnol. 72: 968–974.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Joon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, A.D.Q., Kim, SW., Kim, S.B. et al. Production of β-carotene and acetate in recombinant Escherichia coli with or without mevalonate pathway at different culture temperature or pH. Biotechnol Bioproc E 17, 1196–1204 (2012). https://doi.org/10.1007/s12257-012-0272-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0272-2

Keywords

Navigation