Skip to main content
Log in

Ethanol production by In situ xylose isomerization using recombinant Escherichia coli and fermentation using conventional Saccharomyces cerevisiae

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Xylose isomerase from Geobacillus kaustophilus HTA426 was functionally expressed in Escherichia coli BL21 (DE3) and the recombinant E. coli cells were used together with conventional Saccharomyces cerevisiae to produce ethanol from xylose by simultaneous xylose isomerisation and fermentation. When recombinant E. coli cells were used as the source of xylose isomerase, a significant amount of ethanol was produced from xylose, whereas the control without recombinant E. coli cells did not produce any detectable amount of ethanol from xylose. Ethanol production was increased by 38% by feeding more recombinant E. coli at 48 h compared to adding recombinant E. coli only in the beginning, resulting in more ethanol production than P. stipitis CBS6054 under the same conditions. The xylitol accumulation by the in situ process was only 57% of that produced by the P. stipitis CBS6054.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J. (1997) Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56: 1–24.

    Article  CAS  Google Scholar 

  2. Van Maris, A. J. A., A. A. Winkler, M. Kuyper, W. T. A. M. de Laat, J. P. van Dijken, and J. T. Pronk (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a key component. Adv. Biochem. Engin / Biotechnol. 108: 179–204.

    Google Scholar 

  3. Toivola, A., D. Yarrow, E. Van den Bosch, J. P. Van Dijken, and W. A. Scheffers (1984) Ethanolic fermentation of d-xylose by yeasts. Appl. Environ. Microbiol. 47: 1221–1223.

    CAS  Google Scholar 

  4. Karimi, K., G. Emtiaze, and M. J. Taherzadeh (2006) Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by mucor indicus. Proc. Biochem. 41: 653–658.

    Article  CAS  Google Scholar 

  5. Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram (1991) Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas moblis genes encoding pyruvate decarboxylase and alcohol hydrogenase II. Appl. Environ. Microbiol. 57: 893–900.

    CAS  Google Scholar 

  6. Yomano, L. P., S. W. York, S. Zhou, K. T. Shanmugam, and L. O. Ingram (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol. Lett. 30: 2097–2103.

    Article  CAS  Google Scholar 

  7. Jeffries, T. W. and Y. S. Jin (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495–509.

    Article  CAS  Google Scholar 

  8. Kötter, P., R. Amore, C. P. Hollenberg, and M. Ciriacy (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18: 493–500.

    Article  Google Scholar 

  9. Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240–243.

    Article  CAS  Google Scholar 

  10. Sarthy, A. V., B. L. Mcconaughy, Z. Lobo, J. A. Sundstrom, C. E. Furlong, and B. D. Hall (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 1996–2000.

    CAS  Google Scholar 

  11. Walfridsson, M., X. Bao, M. Anderlund, G. Lilius, L. Bülow, and B. Hahn-Hägerdal (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harbouring the thermus thermophilus xylA gene, which express an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62: 4648–4651.

    CAS  Google Scholar 

  12. Chandrakant, P. and V. S. Bisaria (2000) Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl. Microbiol. Biotechnol. 53: 301–309.

    Article  CAS  Google Scholar 

  13. Rao, K., S. Chelikani, P. Relue, and S. Varanasi (2008) A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose. Appl. Biochem. Biotechnol. 146: 101–107.

    Article  CAS  Google Scholar 

  14. Dische, Z. and E. Borenfreund (1951) A new spectrophotometric method for the detection and determination of ketosugars and trioses. J. Biol. Chem. 192: 583–587.

    CAS  Google Scholar 

  15. Zaldivar, J., J. Nielsen, and L. Olsson (2001) Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56: 17–34.

    Article  CAS  Google Scholar 

  16. Richard, P., M. H. Toivari, and M. Penttilä (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett. 457: 135–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wu, J.C. Ethanol production by In situ xylose isomerization using recombinant Escherichia coli and fermentation using conventional Saccharomyces cerevisiae . Biotechnol Bioproc E 17, 981–985 (2012). https://doi.org/10.1007/s12257-012-0015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0015-4

Keywords

Navigation