Skip to main content
Log in

Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Aqueous extracts from date by-products of the sucrose-rich variety “Deglet Nour” were used as a starting substrate to achieve the enzymatic synthesis of fructooligosaccharides (FOS) commonly used as prebiotics. A crude β-fructofuranosidase (Ffase) preparation from Aspergillus awamori NBRC4033 was immobilized on chitosan by covalent binding through glutaraldehyde linkages (Yi = 88%, Ya = 54%), and used for this purpose. The effect of water-extraction volume on the FOS synthesis by transfructosylation was studied. It was found that 150 mL/100 g of date by-products gave the best FOS concentration and productivity (123 g/L and 18.5 g/h/100 g respectively), related to an optimal sucrose conversion of 53.26%. The main FOS product was purified via a biogel-P2 gel filtration column. Its structure was determined as 1-kestose: α-Dglucopyranosyl-( 1→2)-β-D-fructofuranosyl-(2→1)-β-Dfructofuranoside by combination of 1H, 13C and 2D-NMR techniques. Our results provide new insights into the enzymatic synthesis of FOS from an alternative source of sucrose, namely date by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshikawa, J., S. Amachi, H. Shinoyama, and T. Fujii (2008) Production offructooligosaccharides by crude enzyme preparations of b-fructofuranosidase from Aureobasidium pullulans. Biotechnol. Lett. 30: 535–539.

    Article  CAS  Google Scholar 

  2. Sangeetha, P. T., M. Ramesh, and S. G. Prapulla (2005) Maximisation of fructooligosaccharides production by two stage continuous process and its scale up. J. Food Eng. 68: 57–64.

    Article  Google Scholar 

  3. Nakakuki, T. (2005) Present status and future prospects of functional oligosaccharide development in Japan. J. Appl. Glycosci. 52: 267–271.

    Article  CAS  Google Scholar 

  4. Kang, S. A., U. Chun, and K. H. Jang (2005) Effects of dietary fructan on cecal enzyme activities in rats. Biotechnol. Bioproc. Eng. 10: 582–586.

    Article  CAS  Google Scholar 

  5. Nguyen, Q. D., F. Mattes, A. Hoschke, J. Rezessy-Szabo, and M. K. Bhat (1999) Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnol. Lett. 21: 183–186.

    Article  CAS  Google Scholar 

  6. Hayashi, S., K. Matsuzaki, Y. Takasaki, H. Ueno, and K. Imada (1992) Production of β-frutofuranosidase by Aspergillus japonicus. World J. Microbiol. Biotechnol. 8: 155–159.

    Article  CAS  Google Scholar 

  7. Yun, J. W. and S. K. Song (1996) Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnol. Bioproc. Eng. 1: 18–21.

    Article  Google Scholar 

  8. Godfrey, T. and S. West (1996) Industrial Enzymology. 2nd ed., MacMillan. London, UK.

    Google Scholar 

  9. Kotwal, S. M. and V. Shankar (2009) Immobilized invertase. Biotechnol. Adv. 27: 311–322.

    Article  CAS  Google Scholar 

  10. Emregula, E., S. Sungura, and U. Akbulutb (2006) Polyacrylamide-gelatine carrier system used for invertase immobilization. Food Chem. 97: 591–597.

    Article  Google Scholar 

  11. Marquez, L. D. S., B. V. Cabrala, F. F. Freitasa, V. L. Cardosoa, and E. J. Ribeiroa (2008) Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. J. Mol. Catal. B-Enzym. 51: 86–92.

    Article  CAS  Google Scholar 

  12. Selampinara, F., U. Akbuluta, M. Y. Özdenb, and L. Topparec (1997) Immobilization of invertase in conducting polymer matrices. Biomat. 18: 1163–1168.

    Article  Google Scholar 

  13. Al-Shahib, W. and R. J. Marshall (2003) The fruit of the date palm: Its possible use as the best food for the future. Int. J. Food. Sci. Nut. 54: 247–259.

    Article  Google Scholar 

  14. FAOSTAT (2009) Agricultural data. Food and Agriculture organization of the United Nations STAT. Agricultural production database. Rome.

  15. Chaira, N., M. I. Smaali, M. Martinez-Tome, A. Mrabet, M. A. Murcia, and A. Ferchichi (2009) Simple phenolic composition, flavonoid contents and antioxidant capacities in water-methanol extracts of Tunisian common date cultivars (Phoenix dactylifera L.). Int. J. Food. Sci. Nutr. 60: 316–329.

    Article  CAS  Google Scholar 

  16. Besbes, S., L. Drira, C. Blecker, C. Deroanne, and H. Attia (2009) Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam. Food Chem. 112: 406–411.

    Article  CAS  Google Scholar 

  17. Yun, J. W. (1996) Fructooligosaccharides: Occurrence, preparation, and application. Enz. Microb. Technol. 19: 107–117.

    Article  CAS  Google Scholar 

  18. Smaali, I., M. Gargouri, F. Limam, S. Fattouch, T. Maugard, M. D. Legoy and M. N. Marzouki (2003) Production, purification and biochemical characterization of two β-glucosidases from Sclerotinia sclerotiorum. Appl. Biochem. Biotech. 111: 29–40.

    Article  Google Scholar 

  19. Smaali I., C. Remond, Y. Skhiri, and M. J. O’Donohue (2009) Biocatalytic conversion of wheat bran hydrolysate using an immobilized GH43 β-xylosidase. Biores. Technol. 100: 338–344.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  21. Chaira, N., I. Smaali, S. Besbes, A. Mrabet, B. Lachiheb, and A. Ferchichi (2011) Production of fructose rich syrups using invertase from date palm fruits. J. Food. Biochem. doi:10.1111/j.1745-4514.2010.00487x.

  22. Hidaka, H., M. Hirayama, and N. Sumi (1988) A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 52: 1181–1187.

    Article  CAS  Google Scholar 

  23. Withers, S. G. (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydrate Polym. 44: 325–337.

    Article  CAS  Google Scholar 

  24. Smaali, I., N. Michaud, N. Marzouki, M. D. Legoy, and T. Maugard (2004) Comparison of two β-glucosidases for enzymatic synthesis of β-(1–3)-β-(1–6) gluco-oligosaccharides. Biotechnol. Lett. 26: 675–679.

    Article  CAS  Google Scholar 

  25. Alvaro-Benito, M., M. De Abreu, L. Fernandez-Arrojo, F. J. Plou, J. Jimenez-Barbero, A. Ballesteros, J. Polaina, and M. Fernandez-Lobato (2007) Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J. Biotechnol. 132: 75–81.

    Article  CAS  Google Scholar 

  26. Calub, T. M. and A. L. Waterhouse (1990) Proton and carbon chemical-shift assignments for 1-kestose, from two-dimensional NMR spectral measurements. Carbohydrate Res. 199: 11–17.

    Article  CAS  Google Scholar 

  27. Rayssiguier, Y., J. Busserolles, A. Mazur, and E. Gueux (2004) Use of prebiotics for preventing or treating oxidation stress. WIPO Patent Application WO/2004/056210.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Smaali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smaali, I., Jazzar, S., Soussi, A. et al. Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033. Biotechnol Bioproc E 17, 385–392 (2012). https://doi.org/10.1007/s12257-011-0388-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0388-9

Keywords

Navigation