Skip to main content
Log in

Fundamental analysis of real-time PCR quantification and modeling for thermophilic L-lactate fermentation by Bacillus coagulans from glucose

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Batch and semi-continuous thermophilic l-lactate fermentation experiments were performed using Bacillus coagulans and glucose as a substrate. Reactor performance and biomass concentrations were assessed using two methods: turbidity as a traditional biomass index and real-time polymerase chain reaction (PCR) quantification of 16S rRNA genes. In the batch experiment, although the relationship between turbidity and real-time PCR assay differed depending on the growth phase, a correlation was observed between both assay methods. In the semi-continuous experiment, real-time PCR measurement was well suited for use as an index for evaluating bacterial mass under different organic loading conditions. A mathematical model was applied to evaluate the real-time PCR quantification to long-term, semi-continuous lactate fermentation. Lactate fermentation was well suited since only B. coagulans was involved in the reactions. The results obtained revealed a fundamental relationship between real-time PCR and traditional biomass analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batstone, D. J., J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, and V. A. Vavilin (2002) Anaerobic Digestion Model No.1. International Water Association (IWA) Publishing, London, UK.

    Google Scholar 

  2. Hidaka, T., T. Horie, S. Akao, and H. Tsuno (2010) Kinetic model of thermophilic L-lactate fermentation by Bacillus coagulans combined with real-time PCR quantification. Water Res. 44: 2554–2562.

    Article  CAS  Google Scholar 

  3. Michelson, T., K. Kask, E. Jõgi, E. Talpsep, I. Suitso, and A. Nurk (2006) L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enz. Microbial. Technol. 39: 861–867.

    Article  CAS  Google Scholar 

  4. Payot, T., Z. Chemaly, and M. Fick (1999) Lactic acid production by Bacillus coagulans-kinetic studies and optimization of culture medium for batch and continuous fermentations. Enz. Microbial. Technol. 24: 191–199.

    Article  CAS  Google Scholar 

  5. Kobayashi, T., D. Yasuda, Y. Li, K. Kubota, H. Harada, and H. Yu (2009) Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge. Bioresour. Technol. 100: 4981–4988.

    Article  CAS  Google Scholar 

  6. Furet, J., P. Quénée, and P. Tailliez (2004) Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 97: 197–207.

    Article  CAS  Google Scholar 

  7. Wang, M. Y., B. H. Olson, and J. S. Chang (2008) Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Appl. Microbiol. Biotechnol. 78: 525–532.

    Article  CAS  Google Scholar 

  8. Wang, M., Y. Tsai, B. H. Olson, and J. Chang (2008) Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. Int. J. Hydrogen Energy 33: 4730–4738.

    Article  CAS  Google Scholar 

  9. Akao, S., H. Tsuno, T. Horie, and S. Mori (2007) Effects of pH and temperature on products and bacterial community in L-lactate batch fermentation of garbage under unsterile condition. Water Res. 41: 2636–2642.

    Article  CAS  Google Scholar 

  10. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  11. APHA, AWWA, WEF (1995) Standard methods for the examination of water and wastewater. 19th ed., Washington D. C., American Public Health Association Publications.

    Google Scholar 

  12. Lin, J. Q., S. M. Lee, and Y. M. Koo (2004) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnol. Bioproc. Eng. 9: 52–58.

    Article  CAS  Google Scholar 

  13. Haldane, J. B. S. (1930) Enzymes. Longmans, London

    Google Scholar 

  14. Burgos-Rubio, C. N., M. R. Okos, and P. C. Wankat (2000) Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Prog. 16: 305–314.

    Article  CAS  Google Scholar 

  15. Gray, N. F. (2004) Biology of Wastewater Treatment. 2nd ed., Imperial College Press, London, UK.

    Book  Google Scholar 

  16. Cicek, N., J. Macomber, J. Davel, M. T. Suidan, J. Audic, and P. Genestet (2001) Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor. Water Sci. Technol. 43: 43–50.

    CAS  Google Scholar 

  17. Tsuno, H., T. Hidaka, and F. Nishimura (2002) A simple biofilm model of bacterial competition for attached surface. Water Res. 36: 996–1006.

    Article  CAS  Google Scholar 

  18. Hidaka, T., H. Tsuno, and N. Kishimoto (2003) Advanced treatment of sewage by pre-coagulation and biological filtration process. Water Res. 37: 4259–4269.

    Article  CAS  Google Scholar 

  19. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 59: 927–934.

    Article  CAS  Google Scholar 

  20. Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson, and G. S. Sayler (2003) Real-time pcr quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343–351.

    Article  CAS  Google Scholar 

  21. Ha, J. H., T. Hidaka, and H. Tsuno (2011) Analysis of factors affecting the ratio of microcystin to chlorophyll-a in cyanobacterial blooms using real-time polymerase chain reaction. Environ. Toxicol. 26: 21–28.

    Article  CAS  Google Scholar 

  22. Hidaka, T., T. Asahira, H. Koshikawa, J. Cheon, Y. Park, and H. Tsuno (2010) Effect of microbial composition on thermophilic acid fermentation. Enz. Microb. Technol. 47: 127–133.

    Article  CAS  Google Scholar 

  23. Ramirez, I., E. I. P. Volcke, R. Rajinikanth, and J. Steyer (2009) Modeling microbial diversity in anaerobic digestion through an extended ADM1 model. Water Res. 43: 2787–2800.

    Article  CAS  Google Scholar 

  24. Cheon, J., T. Hidaka, S. Mori, H. Koshikawa, and H. Tsuno (2008) Applicability of random cloning method to analyze microbial community in full-scale anaerobic digesters. J. Biosci. Bioeng. 106: 134–140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taira Hidaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidaka, T., Tsuno, H., Yagi, H. et al. Fundamental analysis of real-time PCR quantification and modeling for thermophilic L-lactate fermentation by Bacillus coagulans from glucose. Biotechnol Bioproc E 17, 290–297 (2012). https://doi.org/10.1007/s12257-011-0370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0370-6

Keywords

Navigation