Skip to main content
Log in

Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study aimed to improve the acid tolerance of Lactobacillus casei Zhang and compare the stress response of the parental strain and the acid-resistant mutant during acidic conditions. Adaptive evolution was conducted for 70 days to generate acid-tolerant L. casei. The evolved mutant lb-2 exhibited more than a 60% increase in biomass as well as a 13.6 and 65.6% increase in concentrations of lactate and acetate, respectively, when cultured at pH 4.3 for 64 h. Lactic acid tolerances of the parental strain and the evolved mutant were determined. As a result, the evolved mutant showed a 318-fold higher survival rate than that of the parental strain. Physiological analysis showed that the evolved mutant exhibited higher intracellular pH (pHi), NH4 + concentration and lower inner membrane permeability than that of the parental strain during acid stress. Moreover, higher amounts of intracellular arginine and aspartate were also detected in lb-2 under acid stress. Validation of the relationship between the acid tolerance and the intracellular arginine and aspartate accumulation was conducted by experiments that showed the survival of L. casei at pH 3.3 was improved 1.36-, 2.10-, or 3.42-fold by the addition of 50 mM aspartate, arginine or both of them, respectively. Taken together, results presented here not only supply an effective way to select acid-resistant strains for the food industry, but also contribute to reveal the mechanisms of acid tolerance and provide new strategies to enhance the industrial utility and health-promoting properties of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleerebezem, M. and E. E. Vaughan (2009) Probiotic and gut lactobacilli and bifidobacteria: Molecular approaches to study diversity and activity. Annu. Rev. Microbiol. 63: 269–290.

    Article  CAS  Google Scholar 

  2. De Angelis, M. and M. Gobbetti (2004) Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106–122.

    Article  Google Scholar 

  3. Parvez, S., K. A. Malik, S. A. Kang, and H. Y. Kim (2006) Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171–1185.

    Article  CAS  Google Scholar 

  4. Zhu, Y., Y. Zhang, and Y. Li (2009) Understanding the industrial application potential of lactic acid bacteria through genomics. Appl. Microbiol. Biot. 83: 597–610.

    Article  CAS  Google Scholar 

  5. Rochat, T., J. J. Gratadoux, A. Gruss, G. Corthier, E. Maguin, P. Langella, and M. van de Guchte (2006) Production of a heterologous nonheme catalase by Lactobacillus casei: An efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl. Environ. Microb. 72: 5143–5149.

    Article  CAS  Google Scholar 

  6. Serrazanetti, D. I., M. E. Guerzoni, A. Corsetti, and R. Vogel (2009) Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 26: 700–711.

    Article  CAS  Google Scholar 

  7. Choi, S., D. Baumler, and C. Kaspar (2000) Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microb. 66: 3911–3916.

    Article  CAS  Google Scholar 

  8. Warnecke, T. and R. T. Gill (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25–32.

    Article  Google Scholar 

  9. Matsumoto, M., H. Ohishi, and Y. Benno (2004) H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93: 109–113.

    Article  CAS  Google Scholar 

  10. Lorca, G. L. and G. F. de Valdez (2001) Acid tolerance mediated by membrane ATPases in Lactobacillus acidophilus. Biotechnol. Lett. 23: 777–780.

    Article  CAS  Google Scholar 

  11. Lebeer, S., J. Vanderleyden, and S. C. J. De Keersmaecker (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. R. 72: 728–764.

    Article  CAS  Google Scholar 

  12. Hutkins, R. W. and N. L. Nannen (1993) pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354–2365.

    Article  CAS  Google Scholar 

  13. Siegumfeldt, H., K. B. Rechinger, and M. Jakobsen (2000) Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl. Environ. Microb. 66: 2330–2335.

    Article  CAS  Google Scholar 

  14. Zhang, Y. M. and C. O. Rock (2008) Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6: 222–233.

    Article  Google Scholar 

  15. Fong, S. S., A. R. Joyce, and B. O. Palsson (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res. 15: 1365–1372.

    Article  CAS  Google Scholar 

  16. Miller, S. R. and R. W. Castenholz (2000) Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl. Environ. Microb. 66: 4222–4229.

    Article  CAS  Google Scholar 

  17. Breeuwer, P., J. Drocourt, F. Rombouts, and T. Abee (1996) A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microb. 62: 178–183.

    CAS  Google Scholar 

  18. Fountoulakis, M. and H. Lahm (1998) Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826: 109–134.

    Article  CAS  Google Scholar 

  19. Neves, R., P. Moraes, M. Saleh, V. Loureiro, F. Silva, M. Barros, C. Padilha, S. Jorge, and P. Padilha (2009) FAAS determination of metal nutrients in fish feed after ultrasound extraction. Food Chem. 113: 679–683.

    Article  CAS  Google Scholar 

  20. Fu, R., J. Chen, and Y. Li (2005) Heterologous leaky production of transglutaminase in Lactococcus lactis significantly enhances the growth performance of the host. Appl. Environ. Microbiol. 71: 8911–8919.

    Article  CAS  Google Scholar 

  21. Lehrer, R. I., A. Barton, and T. Ganz (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J. Immunol. Methods 108: 153–158.

    Article  CAS  Google Scholar 

  22. Len, M. C. L., D. W. S. Harty, and N. A. Jacques (2004) Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiol. 150: 1353–1366.

    Article  CAS  Google Scholar 

  23. O’sullivan, E. and S. Condon (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl. Environ. Microb. 63: 4210–4215.

    Google Scholar 

  24. Barker, C. and S. Park (2001) Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl. Environ. Microb. 67: 1594–1600.

    Article  CAS  Google Scholar 

  25. Fernández, M. and M. Zúñiga (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155–183.

    Article  Google Scholar 

  26. Marquis, R., G. Bender, D. Murray, and A. Wong (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microb. 53: 198–200.

    CAS  Google Scholar 

  27. Curran, T., J. Lieou, and R. Marquis (1995) Arginine deiminase system and acid adaptation of oral streptococci. Appl. Environ. Microb. 61: 4494–4496.

    CAS  Google Scholar 

  28. Casiano-Colon, A. and R. Marquis (1988) Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microb. 54: 1318–1324.

    CAS  Google Scholar 

  29. Poolman, B., A. Driessen, and W. Konings (1987) Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J. Bacteriol. 169: 5597–5604.

    CAS  Google Scholar 

  30. Sánchez, B., M. C. Champomier-Vergès, M. C. Collado, P. Anglade, F. Baraige, Y. Sanz, C. G. de los Reyes-Gavilan, A. Margolles, and M. Zagorec (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum Biotype longum. Appl. Environ. Microb. 73: 6450–6459.

    Article  Google Scholar 

  31. Portnoy, V. A., D. Bezdan, and K. Zengler (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr. Opin. Biotech. 22: 590–594.

    Article  CAS  Google Scholar 

  32. Wang, Y., R. Manow, C. Finan, J. Wang, E. Garza, and S. Zhou (2011) Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J. Ind. Microbiol. Biot. 38: 1371–1377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guocheng Du or Jian Chen.

Additional information

Two authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wu, C., Du, G. et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioproc E 17, 283–289 (2012). https://doi.org/10.1007/s12257-011-0346-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0346-6

Keywords

Navigation